Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
-
|
4 |
-
import
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
out = model.generate(**inputs)
|
13 |
-
caption = processor.decode(out[0], skip_special_tokens=True)
|
14 |
-
return caption
|
15 |
-
|
16 |
-
demo = gr.Interface(
|
17 |
-
fn=generate_caption,
|
18 |
-
inputs=gr.Image(type="pil"),
|
19 |
-
outputs="text",
|
20 |
-
title="Image Caption Generator",
|
21 |
-
description="Upload an image and get a caption using BLIP base model."
|
22 |
)
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!pip install -q transformers accelerate bitsandbytes gradio torch pillow
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from transformers import (
|
5 |
+
AutoTokenizer,
|
6 |
+
AutoModelForSeq2SeqLM,
|
7 |
+
BlipProcessor,
|
8 |
+
BlipForConditionalGeneration,
|
9 |
+
BitsAndBytesConfig
|
10 |
+
)
|
11 |
import gradio as gr
|
12 |
from PIL import Image
|
13 |
+
import re
|
14 |
+
from typing import List, Tuple
|
15 |
|
16 |
+
# Configuration for 4-bit quantization
|
17 |
+
quant_config = BitsAndBytesConfig(
|
18 |
+
load_in_4bit=True,
|
19 |
+
bnb_4bit_compute_dtype=torch.float16,
|
20 |
+
bnb_4bit_quant_type="nf4",
|
21 |
+
bnb_4bit_use_double_quant=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
)
|
23 |
|
24 |
+
class RiverPollutionAnalyzer:
|
25 |
+
def __init__(self):
|
26 |
+
try:
|
27 |
+
# Initialize BLIP for image captioning
|
28 |
+
self.blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
29 |
+
self.blip_model = BlipForConditionalGeneration.from_pretrained(
|
30 |
+
"Salesforce/blip-image-captioning-base",
|
31 |
+
torch_dtype=torch.float16,
|
32 |
+
device_map="auto"
|
33 |
+
)
|
34 |
+
|
35 |
+
# Initialize FLAN-T5-XL for text analysis
|
36 |
+
self.tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-xl")
|
37 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(
|
38 |
+
"google/flan-t5-xl",
|
39 |
+
device_map="auto",
|
40 |
+
quantization_config=quant_config
|
41 |
+
)
|
42 |
+
|
43 |
+
except Exception as e:
|
44 |
+
raise RuntimeError(f"Model loading failed: {str(e)}")
|
45 |
+
|
46 |
+
self.pollutants = [
|
47 |
+
"plastic waste", "chemical foam", "industrial discharge",
|
48 |
+
"sewage water", "oil spill", "organic debris",
|
49 |
+
"construction waste", "medical waste", "floating trash",
|
50 |
+
"algal bloom", "toxic sludge", "agricultural runoff"
|
51 |
+
]
|
52 |
+
|
53 |
+
self.severity_descriptions = {
|
54 |
+
1: "Minimal pollution - Slightly noticeable",
|
55 |
+
2: "Minor pollution - Small amounts visible",
|
56 |
+
3: "Moderate pollution - Clearly visible",
|
57 |
+
4: "Significant pollution - Affecting water quality",
|
58 |
+
5: "Heavy pollution - Obvious environmental impact",
|
59 |
+
6: "Severe pollution - Large accumulation",
|
60 |
+
7: "Very severe pollution - Major ecosystem impact",
|
61 |
+
8: "Extreme pollution - Dangerous levels",
|
62 |
+
9: "Critical pollution - Immediate action needed",
|
63 |
+
10: "Disaster level - Ecological catastrophe"
|
64 |
+
}
|
65 |
+
|
66 |
+
def analyze_image(self, image):
|
67 |
+
"""Two-step analysis: BLIP captioning + FLAN-T5 analysis"""
|
68 |
+
if not isinstance(image, Image.Image):
|
69 |
+
image = Image.fromarray(image)
|
70 |
+
|
71 |
+
try:
|
72 |
+
# Step 1: Generate image caption with BLIP
|
73 |
+
inputs = self.blip_processor(image, return_tensors="pt").to(self.blip_model.device, torch.float16)
|
74 |
+
caption = self.blip_model.generate(**inputs, max_new_tokens=100)[0]
|
75 |
+
caption = self.blip_processor.decode(caption, skip_special_tokens=True)
|
76 |
+
|
77 |
+
# Step 2: Analyze caption with FLAN-T5
|
78 |
+
prompt = f"""Analyze this river scene: '{caption}'
|
79 |
+
1. List visible pollutants from: {self.pollutants}
|
80 |
+
2. Estimate severity (1-10)
|
81 |
+
|
82 |
+
Respond EXACTLY as:
|
83 |
+
Pollutants: [comma separated list]
|
84 |
+
Severity: [number]"""
|
85 |
+
|
86 |
+
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
87 |
+
outputs = self.model.generate(**inputs, max_new_tokens=200)
|
88 |
+
analysis = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
89 |
+
|
90 |
+
pollutants, severity = self._parse_response(analysis)
|
91 |
+
return self._format_analysis(pollutants, severity)
|
92 |
+
|
93 |
+
except Exception as e:
|
94 |
+
return f"β οΈ Analysis failed: {str(e)}"
|
95 |
+
|
96 |
+
# [Keep all your existing parsing/formatting methods unchanged]
|
97 |
+
def _parse_response(self, analysis: str) -> Tuple[List[str], int]:
|
98 |
+
"""Same parsing logic as before"""
|
99 |
+
# ... (unchanged from your original code) ...
|
100 |
+
|
101 |
+
def _calculate_severity(self, pollutants: List[str]) -> int:
|
102 |
+
"""Same severity calculation"""
|
103 |
+
# ... (unchanged from your original code) ...
|
104 |
+
|
105 |
+
def _format_analysis(self, pollutants: List[str], severity: int) -> str:
|
106 |
+
"""Same formatting"""
|
107 |
+
# ... (unchanged from your original code) ...
|
108 |
+
|
109 |
+
def analyze_chat(self, message: str) -> str:
|
110 |
+
"""Same chat handler"""
|
111 |
+
# ... (unchanged from your original code) ...
|
112 |
+
|
113 |
+
# Initialize with error handling
|
114 |
+
try:
|
115 |
+
analyzer = RiverPollutionAnalyzer()
|
116 |
+
model_status = "β
Models loaded successfully"
|
117 |
+
except Exception as e:
|
118 |
+
analyzer = None
|
119 |
+
model_status = f"β Model loading failed: {str(e)}"
|
120 |
+
|
121 |
+
# Gradio Interface (unchanged layout from your original)
|
122 |
+
css = """
|
123 |
+
/* [Keep your existing CSS] */
|
124 |
+
"""
|
125 |
+
|
126 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
127 |
+
with gr.Column(elem_classes="header"):
|
128 |
+
gr.Markdown("# π River Pollution Analyzer")
|
129 |
+
gr.Markdown(f"### {model_status}")
|
130 |
+
|
131 |
+
with gr.Row(elem_classes="side-by-side"):
|
132 |
+
# Left Panel
|
133 |
+
with gr.Column(elem_classes="left-panel"):
|
134 |
+
with gr.Group():
|
135 |
+
image_input = gr.Image(type="pil", label="Upload River Image", height=300)
|
136 |
+
analyze_btn = gr.Button("π Analyze Pollution", variant="primary")
|
137 |
+
|
138 |
+
with gr.Group(elem_classes="analysis-box"):
|
139 |
+
gr.Markdown("### π Analysis report")
|
140 |
+
analysis_output = gr.Markdown()
|
141 |
+
|
142 |
+
# Right Panel
|
143 |
+
with gr.Column(elem_classes="right-panel"):
|
144 |
+
with gr.Group(elem_classes="chat-container"):
|
145 |
+
chatbot = gr.Chatbot(label="Pollution Analysis Q&A", height=400)
|
146 |
+
with gr.Row():
|
147 |
+
chat_input = gr.Textbox(
|
148 |
+
placeholder="Ask about pollution sources...",
|
149 |
+
label="Your Question",
|
150 |
+
container=False,
|
151 |
+
scale=5
|
152 |
+
)
|
153 |
+
chat_btn = gr.Button("π¬ Ask", variant="secondary", scale=1)
|
154 |
+
clear_btn = gr.Button("π§Ή Clear Chat History", size="sm")
|
155 |
+
|
156 |
+
# Connect functions
|
157 |
+
analyze_btn.click(
|
158 |
+
analyzer.analyze_image if analyzer else lambda x: "Model not loaded",
|
159 |
+
inputs=image_input,
|
160 |
+
outputs=analysis_output
|
161 |
+
)
|
162 |
+
|
163 |
+
# [Keep all other UI event handlers unchanged]
|
164 |
+
|
165 |
+
# Update examples to use local files
|
166 |
+
gr.Examples(
|
167 |
+
examples=[
|
168 |
+
["examples/polluted_river1.jpg"],
|
169 |
+
["examples/polluted_river2.jpg"]
|
170 |
+
],
|
171 |
+
inputs=image_input,
|
172 |
+
outputs=analysis_output,
|
173 |
+
fn=analyzer.analyze_image if analyzer else lambda x: "Model not loaded",
|
174 |
+
cache_examples=True,
|
175 |
+
label="Try example images:"
|
176 |
+
)
|
177 |
+
|
178 |
+
# Launch with queue for stability
|
179 |
+
demo.queue(max_size=3).launch()
|