Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
# Remove the pip install line - use requirements.txt instead
|
2 |
import torch
|
3 |
from transformers import (
|
4 |
AutoTokenizer,
|
@@ -15,6 +14,7 @@ from typing import List, Tuple
|
|
15 |
|
16 |
# Create cache directory
|
17 |
os.makedirs("model_cache", exist_ok=True)
|
|
|
18 |
|
19 |
# Configuration for 4-bit quantization
|
20 |
quant_config = BitsAndBytesConfig(
|
@@ -54,12 +54,6 @@ class RiverPollutionAnalyzer:
|
|
54 |
except Exception as e:
|
55 |
raise RuntimeError(f"Model loading failed: {str(e)}")
|
56 |
|
57 |
-
# [Rest of your class implementation remains unchanged]
|
58 |
-
# ... (keep all your existing methods) ...
|
59 |
-
|
60 |
-
# [Rest of your Gradio implementation remains unchanged]
|
61 |
-
# ... (keep all your existing UI code) ...
|
62 |
-
|
63 |
self.pollutants = [
|
64 |
"plastic waste", "chemical foam", "industrial discharge",
|
65 |
"sewage water", "oil spill", "organic debris",
|
@@ -110,22 +104,97 @@ Severity: [number]"""
|
|
110 |
except Exception as e:
|
111 |
return f"⚠️ Analysis failed: {str(e)}"
|
112 |
|
113 |
-
# [Keep all your existing parsing/formatting methods unchanged]
|
114 |
def _parse_response(self, analysis: str) -> Tuple[List[str], int]:
|
115 |
-
"""
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
def _calculate_severity(self, pollutants: List[str]) -> int:
|
119 |
-
"""
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
def _format_analysis(self, pollutants: List[str], severity: int) -> str:
|
123 |
-
"""
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
def analyze_chat(self, message: str) -> str:
|
127 |
-
"""
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
# Initialize with error handling
|
131 |
try:
|
@@ -135,9 +204,38 @@ except Exception as e:
|
|
135 |
analyzer = None
|
136 |
model_status = f"❌ Model loading failed: {str(e)}"
|
137 |
|
138 |
-
# Gradio Interface
|
139 |
css = """
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
"""
|
142 |
|
143 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
@@ -177,7 +275,23 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
177 |
outputs=analysis_output
|
178 |
)
|
179 |
|
180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
# Update examples to use local files
|
183 |
gr.Examples(
|
@@ -192,5 +306,5 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
192 |
label="Try example images:"
|
193 |
)
|
194 |
|
195 |
-
# Launch with queue for stability
|
196 |
-
demo.queue(max_size=3).launch()
|
|
|
|
|
1 |
import torch
|
2 |
from transformers import (
|
3 |
AutoTokenizer,
|
|
|
14 |
|
15 |
# Create cache directory
|
16 |
os.makedirs("model_cache", exist_ok=True)
|
17 |
+
os.makedirs("examples", exist_ok=True) # Create examples directory
|
18 |
|
19 |
# Configuration for 4-bit quantization
|
20 |
quant_config = BitsAndBytesConfig(
|
|
|
54 |
except Exception as e:
|
55 |
raise RuntimeError(f"Model loading failed: {str(e)}")
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
self.pollutants = [
|
58 |
"plastic waste", "chemical foam", "industrial discharge",
|
59 |
"sewage water", "oil spill", "organic debris",
|
|
|
104 |
except Exception as e:
|
105 |
return f"⚠️ Analysis failed: {str(e)}"
|
106 |
|
|
|
107 |
def _parse_response(self, analysis: str) -> Tuple[List[str], int]:
|
108 |
+
"""Parse the model response into pollutants list and severity score"""
|
109 |
+
pollutants = []
|
110 |
+
severity = 0
|
111 |
+
|
112 |
+
# Extract pollutants
|
113 |
+
pollutants_match = re.search(r"Pollutants:\s*\[(.*?)\]", analysis)
|
114 |
+
if pollutants_match:
|
115 |
+
pollutants_str = pollutants_match.group(1)
|
116 |
+
pollutants = [p.strip() for p in pollutants_str.split(",") if p.strip()]
|
117 |
+
|
118 |
+
# Extract severity
|
119 |
+
severity_match = re.search(r"Severity:\s*(\d+)", analysis)
|
120 |
+
if severity_match:
|
121 |
+
severity = int(severity_match.group(1))
|
122 |
+
|
123 |
+
# If parsing failed, fallback to calculating severity
|
124 |
+
if not severity or severity < 1 or severity > 10:
|
125 |
+
severity = self._calculate_severity(pollutants)
|
126 |
+
|
127 |
+
return pollutants, severity
|
128 |
|
129 |
def _calculate_severity(self, pollutants: List[str]) -> int:
|
130 |
+
"""Calculate severity based on pollutants"""
|
131 |
+
if not pollutants:
|
132 |
+
return 1
|
133 |
+
|
134 |
+
severity_map = {
|
135 |
+
"plastic waste": 4,
|
136 |
+
"chemical foam": 7,
|
137 |
+
"industrial discharge": 8,
|
138 |
+
"sewage water": 6,
|
139 |
+
"oil spill": 9,
|
140 |
+
"organic debris": 3,
|
141 |
+
"construction waste": 5,
|
142 |
+
"medical waste": 8,
|
143 |
+
"floating trash": 4,
|
144 |
+
"algal bloom": 6,
|
145 |
+
"toxic sludge": 9,
|
146 |
+
"agricultural runoff": 5
|
147 |
+
}
|
148 |
+
|
149 |
+
base_score = sum(severity_map.get(p, 3) for p in pollutants)
|
150 |
+
avg_score = base_score / len(pollutants)
|
151 |
+
return min(10, max(1, round(avg_score)))
|
152 |
|
153 |
def _format_analysis(self, pollutants: List[str], severity: int) -> str:
|
154 |
+
"""Format the analysis results into a markdown report"""
|
155 |
+
if not pollutants:
|
156 |
+
pollutants = ["No visible pollution detected"]
|
157 |
+
|
158 |
+
pollutants_list = "\n".join(f"- {p}" for p in pollutants)
|
159 |
+
severity_desc = self.severity_descriptions.get(severity, "Unknown severity level")
|
160 |
+
|
161 |
+
return f"""
|
162 |
+
## Pollution Analysis Report
|
163 |
+
|
164 |
+
### Identified Pollutants:
|
165 |
+
{pollutants_list}
|
166 |
+
|
167 |
+
### Severity Assessment:
|
168 |
+
**Level {severity}/10** - {severity_desc}
|
169 |
+
|
170 |
+
### Recommended Actions:
|
171 |
+
{self._get_recommendations(severity)}
|
172 |
+
"""
|
173 |
+
|
174 |
+
def _get_recommendations(self, severity: int) -> str:
|
175 |
+
"""Get recommendations based on severity level"""
|
176 |
+
if severity <= 3:
|
177 |
+
return "Monitor the situation. Consider community clean-up efforts."
|
178 |
+
elif severity <= 5:
|
179 |
+
return "Local authorities should investigate. Basic remediation needed."
|
180 |
+
elif severity <= 7:
|
181 |
+
return "Immediate containment required. Environmental assessment needed."
|
182 |
+
elif severity <= 9:
|
183 |
+
return "Emergency response required. Notify environmental agencies."
|
184 |
+
else:
|
185 |
+
return "Disaster response needed. Evacuation may be necessary."
|
186 |
|
187 |
def analyze_chat(self, message: str) -> str:
|
188 |
+
"""Handle chat questions about pollution"""
|
189 |
+
prompt = f"""You are an environmental expert. Answer this question about river pollution: {message}
|
190 |
+
|
191 |
+
Provide a concise, factual response in under 100 words."""
|
192 |
+
|
193 |
+
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
194 |
+
outputs = self.model.generate(**inputs, max_new_tokens=150)
|
195 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
196 |
+
|
197 |
+
return response
|
198 |
|
199 |
# Initialize with error handling
|
200 |
try:
|
|
|
204 |
analyzer = None
|
205 |
model_status = f"❌ Model loading failed: {str(e)}"
|
206 |
|
207 |
+
# Gradio Interface
|
208 |
css = """
|
209 |
+
.header {
|
210 |
+
text-align: center;
|
211 |
+
max-width: 800px;
|
212 |
+
margin: auto;
|
213 |
+
}
|
214 |
+
.header img {
|
215 |
+
max-width: 100%;
|
216 |
+
}
|
217 |
+
.side-by-side {
|
218 |
+
display: flex;
|
219 |
+
flex-wrap: wrap;
|
220 |
+
gap: 20px;
|
221 |
+
}
|
222 |
+
.left-panel, .right-panel {
|
223 |
+
flex: 1;
|
224 |
+
min-width: 300px;
|
225 |
+
}
|
226 |
+
.analysis-box {
|
227 |
+
border: 1px solid #e0e0e0;
|
228 |
+
border-radius: 8px;
|
229 |
+
padding: 15px;
|
230 |
+
margin-top: 15px;
|
231 |
+
background: #f9f9f9;
|
232 |
+
}
|
233 |
+
.chat-container {
|
234 |
+
border: 1px solid #e0e0e0;
|
235 |
+
border-radius: 8px;
|
236 |
+
padding: 15px;
|
237 |
+
background: #f9f9f9;
|
238 |
+
}
|
239 |
"""
|
240 |
|
241 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
|
275 |
outputs=analysis_output
|
276 |
)
|
277 |
|
278 |
+
def respond(message, chat_history):
|
279 |
+
if not analyzer:
|
280 |
+
return chat_history + [(message, "Models not loaded. Please try again later.")]
|
281 |
+
response = analyzer.analyze_chat(message)
|
282 |
+
return chat_history + [(message, response)]
|
283 |
+
|
284 |
+
chat_btn.click(
|
285 |
+
respond,
|
286 |
+
[chat_input, chatbot],
|
287 |
+
[chatbot],
|
288 |
+
)
|
289 |
+
chat_input.submit(
|
290 |
+
respond,
|
291 |
+
[chat_input, chatbot],
|
292 |
+
[chatbot],
|
293 |
+
)
|
294 |
+
clear_btn.click(lambda: None, None, chatbot, queue=False)
|
295 |
|
296 |
# Update examples to use local files
|
297 |
gr.Examples(
|
|
|
306 |
label="Try example images:"
|
307 |
)
|
308 |
|
309 |
+
# Launch with queue for stability and allowed paths
|
310 |
+
demo.queue(max_size=3).launch(allowed_paths=["examples"])
|