File size: 14,214 Bytes
c339523 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
import os
import io
import requests
import argparse
import asyncio
import numpy as np
import ffmpeg
from time import time
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from fastapi.middleware.cors import CORSMiddleware
from src.whisper_streaming.whisper_online import backend_factory, online_factory, add_shared_args
import logging
import logging.config
from transformers import pipeline
from huggingface_hub import login
HUGGING_FACE_TOKEN = os.environ['HUGGING_FACE_TOKEN']
login(HUGGING_FACE_TOKEN)
# os.environ['HF_HOME'] = './.cache'
MODEL_NAME = 'Helsinki-NLP/opus-tatoeba-en-ja'
TRANSLATOR = pipeline('translation', model=MODEL_NAME, device='cuda')
TRANSLATOR('Warming up!')
def translator_wrapper(source_text, translation_target_lang, mode):
if mode == 'deepl':
params = {
'auth_key' : os.environ['DEEPL_API_KEY'],
'text' : source_text,
'source_lang' : 'EN', # 翻訳対象の言語
"target_lang": 'JA', # 翻訳後の言語
}
# リクエストを投げる
try:
request = requests.post("https://api-free.deepl.com/v2/translate", data=params, timeout=5) # URIは有償版, 無償版で異なるため要注意
result = request.json()['translations'][0]['text']
except requests.exceptions.Timeout:
result = "(timed out)"
return result
elif mode == 'marianmt':
return TRANSLATOR(source_text)[0]['translation_text']
elif mode == 'google':
import requests
# https://www.eyoucms.com/news/ziliao/other/29445.html
language_type = ""
url = "https://translation.googleapis.com/language/translate/v2"
data = {
'key':"AIzaSyCX0-Wdxl_rgvcZzklNjnqJ1W9YiKjcHUs", # 認証の設定:APIキー
'source': language_type,
'target': translation_target_lang,
'q': source_text,
'format': "text"
}
#headers = {'X-HTTP-Method-Override': 'GET'}
#response = requests.post(url, data=data, headers=headers)
response = requests.post(url, data)
# print(response.json())
print(response)
res = response.json()
print(res["data"]["translations"][0]["translatedText"])
result = res["data"]["translations"][0]["translatedText"]
print(result)
return result
def setup_logging():
logging_config = {
'version': 1,
'disable_existing_loggers': False,
'formatters': {
'standard': {
'format': '%(asctime)s %(levelname)s [%(name)s]: %(message)s',
},
},
'handlers': {
'console': {
'level': 'INFO',
'class': 'logging.StreamHandler',
'formatter': 'standard',
},
},
'root': {
'handlers': ['console'],
'level': 'DEBUG',
},
'loggers': {
'uvicorn': {
'handlers': ['console'],
'level': 'INFO',
'propagate': False,
},
'uvicorn.error': {
'level': 'INFO',
},
'uvicorn.access': {
'level': 'INFO',
},
'src.whisper_streaming.online_asr': { # Add your specific module here
'handlers': ['console'],
'level': 'DEBUG',
'propagate': False,
},
'src.whisper_streaming.whisper_streaming': { # Add your specific module here
'handlers': ['console'],
'level': 'DEBUG',
'propagate': False,
},
},
}
logging.config.dictConfig(logging_config)
setup_logging()
logger = logging.getLogger(__name__)
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
parser = argparse.ArgumentParser(description="Whisper FastAPI Online Server")
parser.add_argument(
"--host",
type=str,
default="localhost",
help="The host address to bind the server to.",
)
parser.add_argument(
"--port", type=int, default=8000, help="The port number to bind the server to."
)
parser.add_argument(
"--warmup-file",
type=str,
dest="warmup_file",
help="The path to a speech audio wav file to warm up Whisper so that the very first chunk processing is fast. It can be e.g. https://github.com/ggerganov/whisper.cpp/raw/master/samples/jfk.wav .",
)
parser.add_argument(
"--diarization",
type=bool,
default=False,
help="Whether to enable speaker diarization.",
)
parser.add_argument(
"--generate-audio",
type=bool,
default=False,
help="Whether to generate translation audio.",
)
add_shared_args(parser)
args = parser.parse_args()
# args.model = 'medium'
if args.lan == 'ja':
translation_target_lang = 'en'
elif args.lan == 'en':
translation_target_lang = 'ja'
asr, tokenizer = backend_factory(args)
if args.diarization:
from src.diarization.diarization_online import DiartDiarization
# Load demo HTML for the root endpoint
with open("src/web/live_transcription.html", "r", encoding="utf-8") as f:
html = f.read()
@app.get("/")
async def get():
return HTMLResponse(html)
SAMPLE_RATE = 16000
CHANNELS = 1
SAMPLES_PER_SEC = int(SAMPLE_RATE * args.min_chunk_size)
BYTES_PER_SAMPLE = 2 # s16le = 2 bytes per sample
BYTES_PER_SEC = SAMPLES_PER_SEC * BYTES_PER_SAMPLE
print('SAMPLE_RATE', SAMPLE_RATE)
print('CHANNELS', CHANNELS)
print('SAMPLES_PER_SEC', SAMPLES_PER_SEC)
print('BYTES_PER_SAMPLE', BYTES_PER_SAMPLE)
print('BYTES_PER_SEC', BYTES_PER_SEC)
def generate_audio(japanese_text, speed=1.0):
api_url = "https://j6im8slpwcevr7g0.us-east-1.aws.endpoints.huggingface.cloud"
headers = {
"Accept" : "application/json",
"Authorization": f"Bearer {HUGGING_FACE_TOKEN}",
"Content-Type": "application/json"
}
payload = {
"inputs": japanese_text,
"speed": speed,
}
response = requests.post(api_url, headers=headers, json=payload).json()
if 'error' in response:
print(response)
return ''
return response
async def start_ffmpeg_decoder():
"""
Start an FFmpeg process in async streaming mode that reads WebM from stdin
and outputs raw s16le PCM on stdout. Returns the process object.
"""
process = (
ffmpeg
.input("pipe:0", format="webm")
.output(
"pipe:1",
format="s16le",
acodec="pcm_s16le",
ac=CHANNELS,
ar=str(SAMPLE_RATE),
# fflags='nobuffer',
)
.global_args('-loglevel', 'quiet')
.run_async(pipe_stdin=True, pipe_stdout=True, pipe_stderr=False, quiet=True)
)
return process
import queue
import threading
@app.websocket("/asr")
async def websocket_endpoint(websocket: WebSocket):
await websocket.accept()
print("WebSocket connection opened.")
ffmpeg_process = await start_ffmpeg_decoder()
pcm_buffer = bytearray()
print("Loading online.")
online = online_factory(args, asr, tokenizer)
print("Online loaded.")
if args.diarization:
diarization = DiartDiarization(SAMPLE_RATE)
# Continuously read decoded PCM from ffmpeg stdout in a background task
async def ffmpeg_stdout_reader():
nonlocal pcm_buffer
loop = asyncio.get_event_loop()
full_transcription = ""
beg = time()
chunk_history = [] # Will store dicts: {beg, end, text, speaker}
buffers = [{'speaker': '0', 'text': '', 'translation': None, 'audio_url': None}]
buffer_line = ''
# Create a queue to hold the chunks
chunk_queue = queue.Queue()
# Function to read from ffmpeg stdout in a separate thread
def read_ffmpeg_stdout():
while True:
try:
chunk = ffmpeg_process.stdout.read(BYTES_PER_SEC)
if not chunk:
break
chunk_queue.put(chunk)
except Exception as e:
print(f"Exception in read_ffmpeg_stdout: {e}")
break
# Start the thread
threading.Thread(target=read_ffmpeg_stdout, daemon=True).start()
while True:
try:
# Get the chunk from the queue
chunk = await loop.run_in_executor(None, chunk_queue.get)
if not chunk:
print("FFmpeg stdout closed.")
break
pcm_buffer.extend(chunk)
print('len(pcm_buffer): ', len(pcm_buffer))
print('BYTES_PER_SEC: ', BYTES_PER_SEC)
if len(pcm_buffer) >= BYTES_PER_SEC:
# Convert int16 -> float32
pcm_array = (np.frombuffer(pcm_buffer, dtype=np.int16).astype(np.float32) / 32768.0)
pcm_buffer = bytearray() # Initialize the PCM buffer
online.insert_audio_chunk(pcm_array)
beg_trans, end_trans, trans = online.process_iter()
if trans:
chunk_history.append({
"beg": beg_trans,
"end": end_trans,
"text": trans,
"speaker": "0"
})
full_transcription += trans
# ----------------
# Process buffer
# ----------------
if args.vac:
# We need to access the underlying online object to get the buffer
buffer_text = online.online.concatenate_tsw(online.online.transcript_buffer.buffer)[2]
else:
buffer_text = online.concatenate_tsw(online.transcript_buffer.buffer)[2]
if buffer_text in full_transcription: # With VAC, the buffer is not updated until the next chunk is processed
buffer_text = ""
buffer_line += buffer_text
punctuations = (',', '.', '?', '!', 'and', 'or', 'but', 'however')
if not any(punctuation in buffer_line for punctuation in punctuations):
continue
last_punctuation_index = max((buffer_line.rfind(p) + len(p) + 1) for p in punctuations if p in buffer_line)
extracted_text = buffer_line[:last_punctuation_index]
buffer_line = buffer_line[last_punctuation_index:]
buffer = {'speaker': '0', 'text': extracted_text, 'translation': None}
translation = translator_wrapper(buffer['text'], translation_target_lang, mode='google')
buffer['translation'] = translation
buffer['text'] += ('|' + translation)
buffer['audio_url'] = generate_audio(translation, speed=1.5) if args.generate_audio else ''
buffers.append(buffer)
# ----------------
# Process lines
# ----------------
'''
print('Process lines')
lines = [{"speaker": "0", "text": ""}]
if args.diarization:
await diarization.diarize(pcm_array)
# diarization.assign_speakers_to_chunks(chunk_history)
chunk_history = diarization.assign_speakers_to_chunks(chunk_history)
for ch in chunk_history:
if args.diarization and ch["speaker"] and ch["speaker"][-1] != lines[-1]["speaker"]:
lines.append({"speaker": ch["speaker"], "text": ch['text']})
else:
lines.append({"speaker": ch["speaker"], "text": ch['text']})
for i, line in enumerate(lines):
if line['text'].strip() == '':
continue
# translation = translator(line['text'])[0]['translation_text']
# translation = translation.replace(' ', '')
# lines[i]['text'] = line['text'] + translation
lines[i]['text'] = line['text']
'''
print('Before making response')
response = {'line': buffer, 'buffer': ''}
print(response)
await websocket.send_json(response)
except Exception as e:
print(f"Exception in ffmpeg_stdout_reader: {e}")
break
print("Exiting ffmpeg_stdout_reader...")
stdout_reader_task = asyncio.create_task(ffmpeg_stdout_reader())
try:
while True:
# Receive incoming WebM audio chunks from the client
message = await websocket.receive_bytes()
# Pass them to ffmpeg via stdin
ffmpeg_process.stdin.write(message)
ffmpeg_process.stdin.flush()
except WebSocketDisconnect:
print("WebSocket connection closed.")
except Exception as e:
print(f"Error in websocket loop: {e}")
finally:
# Clean up ffmpeg and the reader task
try:
ffmpeg_process.stdin.close()
except:
pass
stdout_reader_task.cancel()
try:
ffmpeg_process.stdout.close()
except:
pass
ffmpeg_process.wait()
del online
if args.diarization:
# Stop Diart
diarization.close()
if __name__ == "__main__":
import uvicorn
uvicorn.run(
"app:app", host=args.host, port=args.port, reload=True,
log_level="info"
)
|