File size: 27,085 Bytes
67b1c6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.data import HeteroData
import numpy as np
import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, confusion_matrix, classification_report, roc_curve
from sklearn.model_selection import train_test_split
from pathlib import Path
from datetime import datetime
from loguru import logger
# Temporal Edge Features Function
def create_temporal_edge_features(time_since_src, time_since_tgt, user_i, user_j):
delta_t = torch.abs(time_since_src - time_since_tgt).float()
hour_scale = torch.sin(delta_t / 3600)
day_scale = torch.sin(delta_t / (24 * 3600))
week_scale = torch.sin(delta_t / (7 * 24 * 3600))
same_user = (user_i == user_j).float()
burst_feature = same_user * torch.exp(-delta_t / (24 * 3600))
return torch.stack([hour_scale, day_scale, week_scale, burst_feature], dim=-1)
# Custom Multihead Attention (unchanged)
class CustomMultiheadAttention(nn.Module):
def __init__(self, embed_dim, num_heads):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
assert embed_dim % num_heads == 0, "embed_dim must be divisible by num_heads"
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.out_proj = nn.Linear(embed_dim, embed_dim)
self.scale = self.head_dim ** -0.5
def forward(self, query, key, value, attn_bias=None):
batch_size, seq_len, embed_dim = query.size()
q = self.q_proj(query)
k = self.k_proj(key)
v = self.v_proj(value)
q = q.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
k = k.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
v = v.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
scores = torch.matmul(q, k.transpose(-2, -1)) * self.scale
if attn_bias is not None:
scores = scores + attn_bias.unsqueeze(1)
attn = F.softmax(scores, dim=-1)
out = torch.matmul(attn, v)
out = out.transpose(1, 2).contiguous().view(batch_size, seq_len, embed_dim)
out = self.out_proj(out)
return out, attn
# HeteroGraphormer (unchanged)
class HeteroGraphormer(nn.Module):
def __init__(self, hidden_dim, output_dim, num_heads=4, edge_dim=4):
super().__init__()
self.hidden_dim = hidden_dim
self.embed_dict = nn.ModuleDict({
'user': nn.Linear(14, hidden_dim),
'business': nn.Linear(8, hidden_dim),
'review': nn.Linear(16, hidden_dim)
})
self.edge_proj = nn.Linear(edge_dim, hidden_dim)
self.gru_user = nn.GRU(hidden_dim, hidden_dim, batch_first=True)
self.gru_business = nn.GRU(hidden_dim, hidden_dim, batch_first=True)
self.gru_review = nn.GRU(hidden_dim, hidden_dim, batch_first=True)
self.attention1 = CustomMultiheadAttention(hidden_dim, num_heads)
self.attention2 = CustomMultiheadAttention(hidden_dim, num_heads)
self.ffn1 = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim * 4),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(hidden_dim * 4, hidden_dim)
)
self.ffn2 = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim * 4),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(hidden_dim * 4, hidden_dim)
)
self.norm1 = nn.LayerNorm(hidden_dim)
self.norm2 = nn.LayerNorm(hidden_dim)
self.norm3 = nn.LayerNorm(hidden_dim)
self.norm4 = nn.LayerNorm(hidden_dim)
self.centrality_proj = nn.Linear(1, hidden_dim)
self.classifier = nn.Sequential(
nn.Linear(hidden_dim * 3, hidden_dim),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(hidden_dim, 1)
)
self.dropout = nn.Dropout(0.1)
def time_aware_aggregation(self, x, time_since, decay_rate=0.1):
weights = torch.exp(-decay_rate * time_since.unsqueeze(-1))
return x * weights
def forward(self, data, spatial_encoding, centrality_encoding, node_type_map, time_since_dict, edge_features_dict):
x_dict = {}
for node_type in data.x_dict:
x = self.embed_dict[node_type](data[node_type].x)
if node_type in time_since_dict:
x = self.time_aware_aggregation(x, time_since_dict[node_type])
x_dict[node_type] = x
x = torch.cat([x_dict['user'], x_dict['business'], x_dict['review']], dim=0)
centrality = self.centrality_proj(centrality_encoding)
x = x + centrality
x = x.unsqueeze(0)
x_user = x[:, :data['user'].x.size(0), :]
x_business = x[:, data['user'].x.size(0):data['user'].x.size(0) + data['business'].x.size(0), :]
x_review = x[:, data['user'].x.size(0) + data['business'].x.size(0):, :]
x_user, _ = self.gru_user(x_user)
x_business, _ = self.gru_business(x_business)
x_review, _ = self.gru_review(x_review)
x = torch.cat([x_user, x_business, x_review], dim=1)
total_nodes = x.size(1)
attn_bias = torch.zeros(1, total_nodes, total_nodes, device=x.device)
attn_bias[0] = -spatial_encoding
for edge_type in edge_features_dict:
edge_index = data[edge_type].edge_index
edge_feats = self.edge_proj(edge_features_dict[edge_type])
for i, (src, tgt) in enumerate(edge_index.t()):
attn_bias[0, src, tgt] += edge_feats[i].sum()
residual = x
x, _ = self.attention1(x, x, x, attn_bias=attn_bias)
x = self.norm1(x + residual)
x = self.dropout(x)
residual = x
x = self.ffn1(x)
x = self.norm2(x + residual)
x = self.dropout(x)
residual = x
x, _ = self.attention2(x, x, x, attn_bias=attn_bias)
x = self.norm3(x + residual)
x = self.dropout(x)
residual = x
x = self.ffn2(x)
x = self.norm4(x + residual)
x = self.dropout(x)
x = x.squeeze(0)
user_start = 0
business_start = data['user'].x.size(0)
review_start = business_start + data['business'].x.size(0)
h_user = x[user_start:business_start]
h_business = x[business_start:review_start]
h_review = x[review_start:]
user_indices = data['user', 'writes', 'review'].edge_index[0]
business_indices = data['review', 'about', 'business'].edge_index[1]
review_indices = data['user', 'writes', 'review'].edge_index[1]
h_user_mapped = h_user[user_indices]
h_business_mapped = h_business[business_indices]
h_review_mapped = h_review[review_indices]
combined = torch.cat([h_review_mapped, h_user_mapped, h_business_mapped], dim=-1)
logits = self.classifier(combined)
return torch.sigmoid(logits)
# Updated GraphformerModel with Plotting
class GraphformerModel:
def __init__(self, df, output_path, epochs, test_size=0.3):
self.df_whole = df
self.output_path = output_path
self.output_path = Path(self.output_path) / "GraphformerModel"
self.epochs = epochs
self.df, self.test_df = train_test_split(self.df_whole, test_size=test_size, random_state=42)
torch.manual_seed(42)
np.random.seed(42)
Path(self.output_path).mkdir(parents=True, exist_ok=True)
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.model = HeteroGraphormer(hidden_dim=64, output_dim=1, edge_dim=4).to(self.device)
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=0.005)
self.criterion = nn.BCELoss()
def compute_graph_encodings(self, data):
G = nx.DiGraph()
node_offset = 0
node_type_map = {}
for node_type in ['user', 'business', 'review']:
num_nodes = data[node_type].x.size(0)
for i in range(num_nodes):
G.add_node(node_offset + i)
node_type_map[node_offset + i] = node_type
node_offset += num_nodes
edge_types = [('user', 'writes', 'review'), ('review', 'about', 'business')]
for src_type, rel, tgt_type in edge_types:
edge_index = data[src_type, rel, tgt_type].edge_index
src_nodes = edge_index[0].tolist()
tgt_nodes = edge_index[1].tolist()
src_offset = 0 if src_type == 'user' else (self.num_users if src_type == 'business' else self.num_users + self.num_businesses)
tgt_offset = 0 if tgt_type == 'user' else (self.num_users if tgt_type == 'business' else self.num_users + self.num_businesses)
for src, tgt in zip(src_nodes, tgt_nodes):
G.add_edge(src + src_offset, tgt + tgt_offset)
num_nodes = G.number_of_nodes()
spatial_encoding = torch.full((num_nodes, num_nodes), float('inf'), device=self.device)
for i in range(num_nodes):
for j in range(num_nodes):
if i == j:
spatial_encoding[i, j] = 0
elif nx.has_path(G, i, j):
spatial_encoding[i, j] = nx.shortest_path_length(G, i, j)
centrality_encoding = torch.tensor([G.degree(i) for i in range(num_nodes)], dtype=torch.float, device=self.device).view(-1, 1)
return spatial_encoding, centrality_encoding, node_type_map
def compute_metrics(self, y_true, y_pred, y_prob, prefix=""):
metrics = {}
metrics[f"{prefix}accuracy"] = accuracy_score(y_true, y_pred)
metrics[f"{prefix}precision"] = precision_score(y_true, y_pred, zero_division=0)
metrics[f"{prefix}recall"] = recall_score(y_true, y_pred, zero_division=0)
metrics[f"{prefix}f1"] = f1_score(y_true, y_pred, zero_division=0)
metrics[f"{prefix}auc_roc"] = roc_auc_score(y_true, y_prob)
metrics[f"{prefix}conf_matrix"] = confusion_matrix(y_true, y_pred)
metrics[f"{prefix}class_report"] = classification_report(y_true, y_pred, output_dict=True, zero_division=0)
return metrics
def run_model(self):
features = torch.tensor(self.df.drop(columns=['user_id', 'review_id', 'business_id', 'fake']).values, dtype=torch.float, device=self.device)
y = torch.tensor(self.df['fake'].values, dtype=torch.float, device=self.device)
time_since_user = torch.tensor(self.df['time_since_last_review_user'].values, dtype=torch.float, device=self.device)
time_since_business = torch.tensor(self.df['time_since_last_review_business'].values, dtype=torch.float, device=self.device)
num_rows = len(self.df)
graph = HeteroData()
self.num_users = len(self.df['user_id'].unique())
self.num_businesses = len(self.df['business_id'].unique())
user_indices = torch.tensor(self.df['user_id'].map({uid: i for i, uid in enumerate(self.df['user_id'].unique())}).values, dtype=torch.long, device=self.device)
business_indices = torch.tensor(self.df['business_id'].map({bid: i for i, bid in enumerate(self.df['business_id'].unique())}).values, dtype=torch.long, device=self.device)
review_indices = torch.arange(num_rows, dtype=torch.long, device=self.device)
user_feats = torch.zeros(self.num_users, 14, device=self.device)
business_feats = torch.zeros(self.num_businesses, 8, device=self.device)
review_feats = torch.zeros(num_rows, 16, device=self.device)
user_cols = ['hours', 'user_review_count', 'elite', 'friends', 'fans', 'average_stars',
'time_since_last_review_user', 'user_account_age', 'user_degree',
'user_review_burst_count', 'review_like_ratio', 'latest_checkin_hours',
'user_useful_funny_cool', 'rating_variance_user']
business_cols = ['latitude', 'longitude', 'business_stars', 'business_review_count',
'time_since_last_review_business', 'business_degree',
'business_review_burst_count', 'rating_deviation_from_business_average']
review_cols = ['review_stars', 'tip_compliment_count', 'tip_count', 'average_time_between_reviews',
'temporal_similarity', 'pronoun_density', 'avg_sentence_length',
'excessive_punctuation_count', 'sentiment_polarity', 'good_severity',
'bad_severity', 'code_switching_flag', 'grammar_error_score',
'repetitive_words_count', 'similarity_to_other_reviews', 'review_useful_funny_cool']
for i in range(len(self.df)):
user_idx = user_indices[i]
business_idx = business_indices[i]
user_feats[user_idx] += features[i, :14]
business_feats[business_idx] += features[i, 14:22]
review_feats = features[:, 22:38]
graph['user'].x = user_feats
graph['business'].x = business_feats
graph['review'].x = review_feats
graph['review'].y = y
graph['user', 'writes', 'review'].edge_index = torch.stack([user_indices, review_indices], dim=0)
graph['review', 'about', 'business'].edge_index = torch.stack([review_indices, business_indices], dim=0)
edge_features_dict = {}
user_writes_edge = graph['user', 'writes', 'review'].edge_index
review_about_edge = graph['review', 'about', 'business'].edge_index
src_users = user_indices[user_writes_edge[0]]
tgt_reviews = review_indices[user_writes_edge[1]]
edge_features_dict[('user', 'writes', 'review')] = create_temporal_edge_features(
time_since_user[src_users], time_since_user[tgt_reviews], src_users, src_users
)
src_reviews = review_indices[review_about_edge[0]]
tgt_businesses = business_indices[review_about_edge[1]]
edge_features_dict[('review', 'about', 'business')] = create_temporal_edge_features(
time_since_business[src_reviews], time_since_business[tgt_businesses],
torch.zeros_like(src_reviews), torch.zeros_like(src_reviews)
)
user_time_since = self.df.groupby('user_id')['time_since_last_review_user'].min().reindex(
self.df['user_id'].unique(), fill_value=0).values
time_since_dict = {
'user': torch.tensor(user_time_since, dtype=torch.float, device=self.device)
}
spatial_encoding, centrality_encoding, node_type_map = self.compute_graph_encodings(graph)
# Training with metrics history
self.model.train()
train_metrics_history = []
for epoch in range(self.epochs):
self.optimizer.zero_grad()
out = self.model(graph, spatial_encoding, centrality_encoding, node_type_map, time_since_dict, edge_features_dict)
loss = self.criterion(out.squeeze(), y)
loss.backward()
self.optimizer.step()
pred_labels = (out.squeeze() > 0.5).float()
logger.info(f"PREDICTED LABELS : {pred_labels}")
# print(pred_labels)
probs = out.squeeze().detach().cpu().numpy()
train_metrics = self.compute_metrics(y.cpu().numpy(), pred_labels.cpu().numpy(), probs, prefix="train_")
train_metrics['loss'] = loss.item()
train_metrics_history.append(train_metrics)
if epoch % 10 == 0:
logger.info(f"Epoch {epoch}, Loss: {loss.item():.4f}, Accuracy: {train_metrics['train_accuracy']:.4f}, F1: {train_metrics['train_f1']:.4f}")
# Save model
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
model_save_path = Path(self.output_path) / f"model_GraphformerModel_latest.pth"
torch.save(self.model.state_dict(), model_save_path)
# Testing
if self.test_df is not None:
test_features = torch.tensor(self.test_df.drop(columns=['user_id', 'review_id', 'business_id', 'fake']).values, dtype=torch.float, device=self.device)
test_y = torch.tensor(self.test_df['fake'].values, dtype=torch.float, device=self.device)
test_time_since_user = torch.tensor(self.test_df['time_since_last_review_user'].values, dtype=torch.float, device=self.device)
test_time_since_business = torch.tensor(self.test_df['time_since_last_review_business'].values, dtype=torch.float, device=self.device)
num_test_rows = len(self.test_df)
new_user_unique = self.test_df['user_id'].unique()
new_business_unique = self.test_df['business_id'].unique()
existing_user_ids = list(self.df['user_id'].unique())
user_mapping = {uid: i for i, uid in enumerate(existing_user_ids)}
total_users = self.num_users
for uid in new_user_unique:
if uid not in user_mapping:
user_mapping[uid] = total_users
total_users += 1
existing_business_ids = list(self.df['business_id'].unique())
business_mapping = {bid: i for i, bid in enumerate(existing_business_ids)}
total_businesses = self.num_businesses
for bid in new_business_unique:
if bid not in business_mapping:
business_mapping[bid] = total_businesses
total_businesses += 1
new_user_indices = torch.tensor([user_mapping[uid] for uid in self.test_df['user_id']], dtype=torch.long, device=self.device)
new_business_indices = torch.tensor([business_mapping[bid] for bid in self.test_df['business_id']], dtype=torch.long, device=self.device)
new_review_indices = torch.arange(num_rows, num_rows + num_test_rows, device=self.device)
if total_users > self.num_users:
additional_user_feats = torch.zeros(total_users - self.num_users, 14, device=self.device)
graph['user'].x = torch.cat([graph['user'].x, additional_user_feats], dim=0)
if total_businesses > self.num_businesses:
additional_business_feats = torch.zeros(total_businesses - self.num_businesses, 8, device=self.device)
graph['business'].x = torch.cat([graph['business'].x, additional_business_feats], dim=0)
for i in range(num_test_rows):
user_idx = new_user_indices[i]
business_idx = new_business_indices[i]
if user_idx < graph['user'].x.size(0):
graph['user'].x[user_idx] += test_features[i, :14]
if business_idx < graph['business'].x.size(0):
graph['business'].x[business_idx] += test_features[i, 14:22]
graph['review'].x = torch.cat([graph['review'].x, test_features[:, 22:38]], dim=0)
graph['review'].y = torch.cat([graph['review'].y, test_y], dim=0)
graph['user', 'writes', 'review'].edge_index = torch.cat([
graph['user', 'writes', 'review'].edge_index,
torch.stack([new_user_indices, new_review_indices], dim=0)], dim=1)
graph['review', 'about', 'business'].edge_index = torch.cat([
graph['review', 'about', 'business'].edge_index,
torch.stack([new_review_indices, new_business_indices], dim=0)], dim=1)
all_time_since_user = torch.cat([time_since_user, test_time_since_user])
all_time_since_business = torch.cat([time_since_business, test_time_since_business])
all_user_indices = torch.cat([user_indices, new_user_indices])
all_business_indices = torch.cat([business_indices, new_business_indices])
all_review_indices = torch.cat([review_indices, new_review_indices])
user_writes_edge = graph['user', 'writes', 'review'].edge_index
review_about_edge = graph['review', 'about', 'business'].edge_index
edge_features_dict[('user', 'writes', 'review')] = create_temporal_edge_features(
all_time_since_user[user_writes_edge[0]], all_time_since_user[user_writes_edge[1]],
all_user_indices[user_writes_edge[0]], all_user_indices[user_writes_edge[0]]
)
edge_features_dict[('review', 'about', 'business')] = create_temporal_edge_features(
all_time_since_business[review_about_edge[0]], all_time_since_business[review_about_edge[1]],
torch.zeros_like(review_about_edge[0]), torch.zeros_like(review_about_edge[0])
)
self.num_users = total_users
self.num_businesses = total_businesses
test_user_time_since = self.test_df.groupby('user_id')['time_since_last_review_user'].min().reindex(
pd.Index(list(self.df['user_id'].unique()) + list(self.test_df['user_id'].unique())), fill_value=0).values
time_since_dict['user'] = torch.tensor(test_user_time_since[:total_users], dtype=torch.float, device=self.device)
spatial_encoding, centrality_encoding, node_type_map = self.compute_graph_encodings(graph)
self.model.eval()
with torch.no_grad():
out = self.model(graph, spatial_encoding, centrality_encoding, node_type_map, time_since_dict, edge_features_dict)
pred_labels = (out.squeeze() > 0.5).float()
probs = out.squeeze().detach().cpu().numpy()
test_metrics = self.compute_metrics(graph['review'].y[-num_test_rows:].cpu().numpy(), pred_labels[-num_test_rows:].cpu().numpy(), probs[-num_test_rows:], prefix="test_")
train_metrics = self.compute_metrics(y.cpu().numpy(), pred_labels[:num_rows].cpu().numpy(), probs[:num_rows], prefix="train_")
logger.info(f"Test Accuracy: {test_metrics['test_accuracy']:.4f}, F1: {test_metrics['test_f1']:.4f}, AUC-ROC: {test_metrics['test_auc_roc']:.4f}")
# Save metrics to file
metrics_file = Path(self.output_path) / f"metrics_{timestamp}.txt"
with open(metrics_file, 'w') as f:
f.write("Training Metrics (Final Epoch):\n")
for k, v in train_metrics.items():
f.write(f"{k}: {v}\n")
f.write("\nTest Metrics:\n")
for k, v in test_metrics.items():
f.write(f"{k}: {v}\n")
# Plotting and saving to output_path
plt.figure(figsize=(12, 8))
plt.plot([m['loss'] for m in train_metrics_history], label='Training Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss Curve')
plt.legend()
plt.grid(True)
plt.savefig(Path(self.output_path) / f"loss_curve_{timestamp}.png")
plt.close()
plt.figure(figsize=(12, 8))
plt.plot([m['train_accuracy'] for m in train_metrics_history], label='Training Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.title('Training Accuracy Curve')
plt.legend()
plt.grid(True)
plt.savefig(Path(self.output_path) / f"accuracy_curve_{timestamp}.png")
plt.close()
plt.figure(figsize=(12, 8))
plt.plot([m['train_precision'] for m in train_metrics_history], label='Training Precision')
plt.plot([m['train_recall'] for m in train_metrics_history], label='Training Recall')
plt.plot([m['train_f1'] for m in train_metrics_history], label='Training F1-Score')
plt.xlabel('Epoch')
plt.ylabel('Score')
plt.title('Training Precision, Recall, and F1-Score Curves')
plt.legend()
plt.grid(True)
plt.savefig(Path(self.output_path) / f"prf1_curves_{timestamp}.png")
plt.close()
plt.figure(figsize=(12, 8))
plt.plot([m['train_auc_roc'] for m in train_metrics_history], label='Training AUC-ROC')
plt.xlabel('Epoch')
plt.ylabel('AUC-ROC')
plt.title('Training AUC-ROC Curve')
plt.legend()
plt.grid(True)
plt.savefig(Path(self.output_path) / f"auc_roc_curve_train_{timestamp}.png")
plt.close()
plt.figure(figsize=(8, 6))
sns.heatmap(test_metrics['test_conf_matrix'], annot=True, fmt='d', cmap='Blues', cbar=False)
plt.xlabel('Predicted')
plt.ylabel('True')
plt.title('Test Confusion Matrix')
plt.savefig(Path(self.output_path) / f"confusion_matrix_test_{timestamp}.png")
plt.close()
fpr, tpr, _ = roc_curve(graph['review'].y[-num_test_rows:].cpu().numpy(), probs[-num_test_rows:])
plt.figure(figsize=(10, 6))
plt.plot(fpr, tpr, label=f'Test ROC Curve (AUC = {test_metrics["test_auc_roc"]:.4f})')
plt.plot([0, 1], [0, 1], 'k--', label='Random Guess')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Test ROC Curve')
plt.legend()
plt.grid(True)
plt.savefig(Path(self.output_path) / f"roc_curve_test_{timestamp}.png")
plt.close()
plt.figure(figsize=(8, 6))
sns.heatmap(train_metrics['train_conf_matrix'], annot=True, fmt='d', cmap='Blues', cbar=False)
plt.xlabel('Predicted')
plt.ylabel('True')
plt.title('Training Confusion Matrix (Final Epoch)')
plt.savefig(Path(self.output_path) / f"confusion_matrix_train_{timestamp}.png")
plt.close()
fpr_train, tpr_train, _ = roc_curve(graph['review'].y[:num_rows].cpu().numpy(), probs[:num_rows])
plt.figure(figsize=(10, 6))
plt.plot(fpr_train, tpr_train, label=f'Training ROC Curve (AUC = {train_metrics["train_auc_roc"]:.4f})')
plt.plot([0, 1], [0, 1], 'k--', label='Random Guess')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Training ROC Curve (Final Epoch)')
plt.legend()
plt.grid(True)
plt.savefig(Path(self.output_path) / f"roc_curve_train_{timestamp}.png")
plt.close()
logger.info(f"All metrics, plots, and model saved to {self.output_path}")
|