File size: 27,085 Bytes
67b1c6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.data import HeteroData
import numpy as np
import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, confusion_matrix, classification_report, roc_curve
from sklearn.model_selection import train_test_split
from pathlib import Path
from datetime import datetime
from loguru import logger

# Temporal Edge Features Function
def create_temporal_edge_features(time_since_src, time_since_tgt, user_i, user_j):
    delta_t = torch.abs(time_since_src - time_since_tgt).float()
    hour_scale = torch.sin(delta_t / 3600)
    day_scale = torch.sin(delta_t / (24 * 3600))
    week_scale = torch.sin(delta_t / (7 * 24 * 3600))
    same_user = (user_i == user_j).float()
    burst_feature = same_user * torch.exp(-delta_t / (24 * 3600))
    return torch.stack([hour_scale, day_scale, week_scale, burst_feature], dim=-1)

# Custom Multihead Attention (unchanged)
class CustomMultiheadAttention(nn.Module):
    def __init__(self, embed_dim, num_heads):
        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.head_dim = embed_dim // num_heads
        
        assert embed_dim % num_heads == 0, "embed_dim must be divisible by num_heads"
        
        self.q_proj = nn.Linear(embed_dim, embed_dim)
        self.k_proj = nn.Linear(embed_dim, embed_dim)
        self.v_proj = nn.Linear(embed_dim, embed_dim)
        self.out_proj = nn.Linear(embed_dim, embed_dim)
        
        self.scale = self.head_dim ** -0.5

    def forward(self, query, key, value, attn_bias=None):
        batch_size, seq_len, embed_dim = query.size()
        q = self.q_proj(query)
        k = self.k_proj(key)
        v = self.v_proj(value)
        q = q.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
        k = k.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
        v = v.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
        scores = torch.matmul(q, k.transpose(-2, -1)) * self.scale
        if attn_bias is not None:
            scores = scores + attn_bias.unsqueeze(1)
        attn = F.softmax(scores, dim=-1)
        out = torch.matmul(attn, v)
        out = out.transpose(1, 2).contiguous().view(batch_size, seq_len, embed_dim)
        out = self.out_proj(out)
        return out, attn

# HeteroGraphormer (unchanged)
class HeteroGraphormer(nn.Module):
    def __init__(self, hidden_dim, output_dim, num_heads=4, edge_dim=4):
        super().__init__()
        self.hidden_dim = hidden_dim
        
        self.embed_dict = nn.ModuleDict({
            'user': nn.Linear(14, hidden_dim),
            'business': nn.Linear(8, hidden_dim),
            'review': nn.Linear(16, hidden_dim)
        })
        
        self.edge_proj = nn.Linear(edge_dim, hidden_dim)
        
        self.gru_user = nn.GRU(hidden_dim, hidden_dim, batch_first=True)
        self.gru_business = nn.GRU(hidden_dim, hidden_dim, batch_first=True)
        self.gru_review = nn.GRU(hidden_dim, hidden_dim, batch_first=True)
        
        self.attention1 = CustomMultiheadAttention(hidden_dim, num_heads)
        self.attention2 = CustomMultiheadAttention(hidden_dim, num_heads)
        
        self.ffn1 = nn.Sequential(
            nn.Linear(hidden_dim, hidden_dim * 4),
            nn.ReLU(),
            nn.Dropout(0.1),
            nn.Linear(hidden_dim * 4, hidden_dim)
        )
        self.ffn2 = nn.Sequential(
            nn.Linear(hidden_dim, hidden_dim * 4),
            nn.ReLU(),
            nn.Dropout(0.1),
            nn.Linear(hidden_dim * 4, hidden_dim)
        )
        
        self.norm1 = nn.LayerNorm(hidden_dim)
        self.norm2 = nn.LayerNorm(hidden_dim)
        self.norm3 = nn.LayerNorm(hidden_dim)
        self.norm4 = nn.LayerNorm(hidden_dim)
        
        self.centrality_proj = nn.Linear(1, hidden_dim)
        
        self.classifier = nn.Sequential(
            nn.Linear(hidden_dim * 3, hidden_dim),
            nn.ReLU(),
            nn.Dropout(0.1),
            nn.Linear(hidden_dim, 1)
        )
        
        self.dropout = nn.Dropout(0.1)

    def time_aware_aggregation(self, x, time_since, decay_rate=0.1):
        weights = torch.exp(-decay_rate * time_since.unsqueeze(-1))
        return x * weights

    def forward(self, data, spatial_encoding, centrality_encoding, node_type_map, time_since_dict, edge_features_dict):
        x_dict = {}
        for node_type in data.x_dict:
            x = self.embed_dict[node_type](data[node_type].x)
            if node_type in time_since_dict:
                x = self.time_aware_aggregation(x, time_since_dict[node_type])
            x_dict[node_type] = x
        
        x = torch.cat([x_dict['user'], x_dict['business'], x_dict['review']], dim=0)
        
        centrality = self.centrality_proj(centrality_encoding)
        x = x + centrality

        x = x.unsqueeze(0)

        x_user = x[:, :data['user'].x.size(0), :]
        x_business = x[:, data['user'].x.size(0):data['user'].x.size(0) + data['business'].x.size(0), :]
        x_review = x[:, data['user'].x.size(0) + data['business'].x.size(0):, :]
        
        x_user, _ = self.gru_user(x_user)
        x_business, _ = self.gru_business(x_business)
        x_review, _ = self.gru_review(x_review)
        
        x = torch.cat([x_user, x_business, x_review], dim=1)

        total_nodes = x.size(1)
        attn_bias = torch.zeros(1, total_nodes, total_nodes, device=x.device)
        attn_bias[0] = -spatial_encoding
        
        for edge_type in edge_features_dict:
            edge_index = data[edge_type].edge_index
            edge_feats = self.edge_proj(edge_features_dict[edge_type])
            for i, (src, tgt) in enumerate(edge_index.t()):
                attn_bias[0, src, tgt] += edge_feats[i].sum()

        residual = x
        x, _ = self.attention1(x, x, x, attn_bias=attn_bias)
        x = self.norm1(x + residual)
        x = self.dropout(x)

        residual = x
        x = self.ffn1(x)
        x = self.norm2(x + residual)
        x = self.dropout(x)

        residual = x
        x, _ = self.attention2(x, x, x, attn_bias=attn_bias)
        x = self.norm3(x + residual)
        x = self.dropout(x)

        residual = x
        x = self.ffn2(x)
        x = self.norm4(x + residual)
        x = self.dropout(x)

        x = x.squeeze(0)

        user_start = 0
        business_start = data['user'].x.size(0)
        review_start = business_start + data['business'].x.size(0)
        
        h_user = x[user_start:business_start]
        h_business = x[business_start:review_start]
        h_review = x[review_start:]
        
        user_indices = data['user', 'writes', 'review'].edge_index[0]
        business_indices = data['review', 'about', 'business'].edge_index[1]
        review_indices = data['user', 'writes', 'review'].edge_index[1]
        
        h_user_mapped = h_user[user_indices]
        h_business_mapped = h_business[business_indices]
        h_review_mapped = h_review[review_indices]
        
        combined = torch.cat([h_review_mapped, h_user_mapped, h_business_mapped], dim=-1)
        
        logits = self.classifier(combined)
        return torch.sigmoid(logits)

# Updated GraphformerModel with Plotting
class GraphformerModel:
    def __init__(self, df, output_path, epochs, test_size=0.3):
        self.df_whole = df
        self.output_path = output_path
        self.output_path = Path(self.output_path) / "GraphformerModel"
        self.epochs = epochs
        self.df, self.test_df = train_test_split(self.df_whole, test_size=test_size, random_state=42)
        
        torch.manual_seed(42)
        np.random.seed(42)
        
        Path(self.output_path).mkdir(parents=True, exist_ok=True)
        
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.model = HeteroGraphormer(hidden_dim=64, output_dim=1, edge_dim=4).to(self.device)
        self.optimizer = torch.optim.Adam(self.model.parameters(), lr=0.005)
        self.criterion = nn.BCELoss()

    def compute_graph_encodings(self, data):
        G = nx.DiGraph()
        node_offset = 0
        node_type_map = {}
        
        for node_type in ['user', 'business', 'review']:
            num_nodes = data[node_type].x.size(0)
            for i in range(num_nodes):
                G.add_node(node_offset + i)
                node_type_map[node_offset + i] = node_type
            node_offset += num_nodes

        edge_types = [('user', 'writes', 'review'), ('review', 'about', 'business')]
        for src_type, rel, tgt_type in edge_types:
            edge_index = data[src_type, rel, tgt_type].edge_index
            src_nodes = edge_index[0].tolist()
            tgt_nodes = edge_index[1].tolist()
            src_offset = 0 if src_type == 'user' else (self.num_users if src_type == 'business' else self.num_users + self.num_businesses)
            tgt_offset = 0 if tgt_type == 'user' else (self.num_users if tgt_type == 'business' else self.num_users + self.num_businesses)
            for src, tgt in zip(src_nodes, tgt_nodes):
                G.add_edge(src + src_offset, tgt + tgt_offset)

        num_nodes = G.number_of_nodes()
        spatial_encoding = torch.full((num_nodes, num_nodes), float('inf'), device=self.device)
        for i in range(num_nodes):
            for j in range(num_nodes):
                if i == j:
                    spatial_encoding[i, j] = 0
                elif nx.has_path(G, i, j):
                    spatial_encoding[i, j] = nx.shortest_path_length(G, i, j)
        
        centrality_encoding = torch.tensor([G.degree(i) for i in range(num_nodes)], dtype=torch.float, device=self.device).view(-1, 1)
        
        return spatial_encoding, centrality_encoding, node_type_map

    def compute_metrics(self, y_true, y_pred, y_prob, prefix=""):
        metrics = {}
        metrics[f"{prefix}accuracy"] = accuracy_score(y_true, y_pred)
        metrics[f"{prefix}precision"] = precision_score(y_true, y_pred, zero_division=0)
        metrics[f"{prefix}recall"] = recall_score(y_true, y_pred, zero_division=0)
        metrics[f"{prefix}f1"] = f1_score(y_true, y_pred, zero_division=0)
        metrics[f"{prefix}auc_roc"] = roc_auc_score(y_true, y_prob)
        metrics[f"{prefix}conf_matrix"] = confusion_matrix(y_true, y_pred)
        metrics[f"{prefix}class_report"] = classification_report(y_true, y_pred, output_dict=True, zero_division=0)
        return metrics

    def run_model(self):
        features = torch.tensor(self.df.drop(columns=['user_id', 'review_id', 'business_id', 'fake']).values, dtype=torch.float, device=self.device)
        y = torch.tensor(self.df['fake'].values, dtype=torch.float, device=self.device)
        time_since_user = torch.tensor(self.df['time_since_last_review_user'].values, dtype=torch.float, device=self.device)
        time_since_business = torch.tensor(self.df['time_since_last_review_business'].values, dtype=torch.float, device=self.device)
        num_rows = len(self.df)
    
        graph = HeteroData()
    
        self.num_users = len(self.df['user_id'].unique())
        self.num_businesses = len(self.df['business_id'].unique())
    
        user_indices = torch.tensor(self.df['user_id'].map({uid: i for i, uid in enumerate(self.df['user_id'].unique())}).values, dtype=torch.long, device=self.device)
        business_indices = torch.tensor(self.df['business_id'].map({bid: i for i, bid in enumerate(self.df['business_id'].unique())}).values, dtype=torch.long, device=self.device)
        review_indices = torch.arange(num_rows, dtype=torch.long, device=self.device)
    
        user_feats = torch.zeros(self.num_users, 14, device=self.device)
        business_feats = torch.zeros(self.num_businesses, 8, device=self.device)
        review_feats = torch.zeros(num_rows, 16, device=self.device)
    
        user_cols = ['hours', 'user_review_count', 'elite', 'friends', 'fans', 'average_stars',
                     'time_since_last_review_user', 'user_account_age', 'user_degree',
                     'user_review_burst_count', 'review_like_ratio', 'latest_checkin_hours',
                     'user_useful_funny_cool', 'rating_variance_user']
        business_cols = ['latitude', 'longitude', 'business_stars', 'business_review_count',
                         'time_since_last_review_business', 'business_degree',
                         'business_review_burst_count', 'rating_deviation_from_business_average']
        review_cols = ['review_stars', 'tip_compliment_count', 'tip_count', 'average_time_between_reviews',
                       'temporal_similarity', 'pronoun_density', 'avg_sentence_length',
                       'excessive_punctuation_count', 'sentiment_polarity', 'good_severity',
                       'bad_severity', 'code_switching_flag', 'grammar_error_score',
                       'repetitive_words_count', 'similarity_to_other_reviews', 'review_useful_funny_cool']
    
        for i in range(len(self.df)):
            user_idx = user_indices[i]
            business_idx = business_indices[i]
            user_feats[user_idx] += features[i, :14]
            business_feats[business_idx] += features[i, 14:22]
        review_feats = features[:, 22:38]
    
        graph['user'].x = user_feats
        graph['business'].x = business_feats
        graph['review'].x = review_feats
        graph['review'].y = y
    
        graph['user', 'writes', 'review'].edge_index = torch.stack([user_indices, review_indices], dim=0)
        graph['review', 'about', 'business'].edge_index = torch.stack([review_indices, business_indices], dim=0)
    
        edge_features_dict = {}
        user_writes_edge = graph['user', 'writes', 'review'].edge_index
        review_about_edge = graph['review', 'about', 'business'].edge_index
        
        src_users = user_indices[user_writes_edge[0]]
        tgt_reviews = review_indices[user_writes_edge[1]]
        edge_features_dict[('user', 'writes', 'review')] = create_temporal_edge_features(
            time_since_user[src_users], time_since_user[tgt_reviews], src_users, src_users
        )
        
        src_reviews = review_indices[review_about_edge[0]]
        tgt_businesses = business_indices[review_about_edge[1]]
        edge_features_dict[('review', 'about', 'business')] = create_temporal_edge_features(
            time_since_business[src_reviews], time_since_business[tgt_businesses], 
            torch.zeros_like(src_reviews), torch.zeros_like(src_reviews)
        )
    
        user_time_since = self.df.groupby('user_id')['time_since_last_review_user'].min().reindex(
            self.df['user_id'].unique(), fill_value=0).values
        time_since_dict = {
            'user': torch.tensor(user_time_since, dtype=torch.float, device=self.device)
        }
    
        spatial_encoding, centrality_encoding, node_type_map = self.compute_graph_encodings(graph)
    
        # Training with metrics history
        self.model.train()
        train_metrics_history = []
        for epoch in range(self.epochs):
            self.optimizer.zero_grad()
            out = self.model(graph, spatial_encoding, centrality_encoding, node_type_map, time_since_dict, edge_features_dict)
            loss = self.criterion(out.squeeze(), y)
            loss.backward()
            self.optimizer.step()
            
            pred_labels = (out.squeeze() > 0.5).float()
            logger.info(f"PREDICTED LABELS : {pred_labels}")
            # print(pred_labels)
            probs = out.squeeze().detach().cpu().numpy()
            train_metrics = self.compute_metrics(y.cpu().numpy(), pred_labels.cpu().numpy(), probs, prefix="train_")
            train_metrics['loss'] = loss.item()
            train_metrics_history.append(train_metrics)
            
            if epoch % 10 == 0:
                logger.info(f"Epoch {epoch}, Loss: {loss.item():.4f}, Accuracy: {train_metrics['train_accuracy']:.4f}, F1: {train_metrics['train_f1']:.4f}")
    
        # Save model
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        model_save_path = Path(self.output_path) / f"model_GraphformerModel_latest.pth"
        torch.save(self.model.state_dict(), model_save_path)
    
        # Testing
        if self.test_df is not None:
            test_features = torch.tensor(self.test_df.drop(columns=['user_id', 'review_id', 'business_id', 'fake']).values, dtype=torch.float, device=self.device)
            test_y = torch.tensor(self.test_df['fake'].values, dtype=torch.float, device=self.device)
            test_time_since_user = torch.tensor(self.test_df['time_since_last_review_user'].values, dtype=torch.float, device=self.device)
            test_time_since_business = torch.tensor(self.test_df['time_since_last_review_business'].values, dtype=torch.float, device=self.device)
            num_test_rows = len(self.test_df)
    
            new_user_unique = self.test_df['user_id'].unique()
            new_business_unique = self.test_df['business_id'].unique()
    
            existing_user_ids = list(self.df['user_id'].unique())
            user_mapping = {uid: i for i, uid in enumerate(existing_user_ids)}
            total_users = self.num_users
            for uid in new_user_unique:
                if uid not in user_mapping:
                    user_mapping[uid] = total_users
                    total_users += 1
    
            existing_business_ids = list(self.df['business_id'].unique())
            business_mapping = {bid: i for i, bid in enumerate(existing_business_ids)}
            total_businesses = self.num_businesses
            for bid in new_business_unique:
                if bid not in business_mapping:
                    business_mapping[bid] = total_businesses
                    total_businesses += 1
    
            new_user_indices = torch.tensor([user_mapping[uid] for uid in self.test_df['user_id']], dtype=torch.long, device=self.device)
            new_business_indices = torch.tensor([business_mapping[bid] for bid in self.test_df['business_id']], dtype=torch.long, device=self.device)
            new_review_indices = torch.arange(num_rows, num_rows + num_test_rows, device=self.device)
    
            if total_users > self.num_users:
                additional_user_feats = torch.zeros(total_users - self.num_users, 14, device=self.device)
                graph['user'].x = torch.cat([graph['user'].x, additional_user_feats], dim=0)
            if total_businesses > self.num_businesses:
                additional_business_feats = torch.zeros(total_businesses - self.num_businesses, 8, device=self.device)
                graph['business'].x = torch.cat([graph['business'].x, additional_business_feats], dim=0)
    
            for i in range(num_test_rows):
                user_idx = new_user_indices[i]
                business_idx = new_business_indices[i]
                if user_idx < graph['user'].x.size(0):
                    graph['user'].x[user_idx] += test_features[i, :14]
                if business_idx < graph['business'].x.size(0):
                    graph['business'].x[business_idx] += test_features[i, 14:22]
            graph['review'].x = torch.cat([graph['review'].x, test_features[:, 22:38]], dim=0)
            graph['review'].y = torch.cat([graph['review'].y, test_y], dim=0)
    
            graph['user', 'writes', 'review'].edge_index = torch.cat([
                graph['user', 'writes', 'review'].edge_index,
                torch.stack([new_user_indices, new_review_indices], dim=0)], dim=1)
            graph['review', 'about', 'business'].edge_index = torch.cat([
                graph['review', 'about', 'business'].edge_index,
                torch.stack([new_review_indices, new_business_indices], dim=0)], dim=1)
    
            all_time_since_user = torch.cat([time_since_user, test_time_since_user])
            all_time_since_business = torch.cat([time_since_business, test_time_since_business])
            all_user_indices = torch.cat([user_indices, new_user_indices])
            all_business_indices = torch.cat([business_indices, new_business_indices])
            all_review_indices = torch.cat([review_indices, new_review_indices])
            
            user_writes_edge = graph['user', 'writes', 'review'].edge_index
            review_about_edge = graph['review', 'about', 'business'].edge_index
            
            edge_features_dict[('user', 'writes', 'review')] = create_temporal_edge_features(
                all_time_since_user[user_writes_edge[0]], all_time_since_user[user_writes_edge[1]], 
                all_user_indices[user_writes_edge[0]], all_user_indices[user_writes_edge[0]]
            )
            edge_features_dict[('review', 'about', 'business')] = create_temporal_edge_features(
                all_time_since_business[review_about_edge[0]], all_time_since_business[review_about_edge[1]], 
                torch.zeros_like(review_about_edge[0]), torch.zeros_like(review_about_edge[0])
            )
    
            self.num_users = total_users
            self.num_businesses = total_businesses
    
            test_user_time_since = self.test_df.groupby('user_id')['time_since_last_review_user'].min().reindex(
                pd.Index(list(self.df['user_id'].unique()) + list(self.test_df['user_id'].unique())), fill_value=0).values
            time_since_dict['user'] = torch.tensor(test_user_time_since[:total_users], dtype=torch.float, device=self.device)
    
            spatial_encoding, centrality_encoding, node_type_map = self.compute_graph_encodings(graph)
    
            self.model.eval()
            with torch.no_grad():
                out = self.model(graph, spatial_encoding, centrality_encoding, node_type_map, time_since_dict, edge_features_dict)
                pred_labels = (out.squeeze() > 0.5).float()
                probs = out.squeeze().detach().cpu().numpy()
                test_metrics = self.compute_metrics(graph['review'].y[-num_test_rows:].cpu().numpy(), pred_labels[-num_test_rows:].cpu().numpy(), probs[-num_test_rows:], prefix="test_")
                train_metrics = self.compute_metrics(y.cpu().numpy(), pred_labels[:num_rows].cpu().numpy(), probs[:num_rows], prefix="train_")
                logger.info(f"Test Accuracy: {test_metrics['test_accuracy']:.4f}, F1: {test_metrics['test_f1']:.4f}, AUC-ROC: {test_metrics['test_auc_roc']:.4f}")
    
            # Save metrics to file
            metrics_file = Path(self.output_path) / f"metrics_{timestamp}.txt"
            with open(metrics_file, 'w') as f:
                f.write("Training Metrics (Final Epoch):\n")
                for k, v in train_metrics.items():
                    f.write(f"{k}: {v}\n")
                f.write("\nTest Metrics:\n")
                for k, v in test_metrics.items():
                    f.write(f"{k}: {v}\n")
    
            # Plotting and saving to output_path
            plt.figure(figsize=(12, 8))
            plt.plot([m['loss'] for m in train_metrics_history], label='Training Loss')
            plt.xlabel('Epoch')
            plt.ylabel('Loss')
            plt.title('Training Loss Curve')
            plt.legend()
            plt.grid(True)
            plt.savefig(Path(self.output_path) / f"loss_curve_{timestamp}.png")
            plt.close()
    
            plt.figure(figsize=(12, 8))
            plt.plot([m['train_accuracy'] for m in train_metrics_history], label='Training Accuracy')
            plt.xlabel('Epoch')
            plt.ylabel('Accuracy')
            plt.title('Training Accuracy Curve')
            plt.legend()
            plt.grid(True)
            plt.savefig(Path(self.output_path) / f"accuracy_curve_{timestamp}.png")
            plt.close()
    
            plt.figure(figsize=(12, 8))
            plt.plot([m['train_precision'] for m in train_metrics_history], label='Training Precision')
            plt.plot([m['train_recall'] for m in train_metrics_history], label='Training Recall')
            plt.plot([m['train_f1'] for m in train_metrics_history], label='Training F1-Score')
            plt.xlabel('Epoch')
            plt.ylabel('Score')
            plt.title('Training Precision, Recall, and F1-Score Curves')
            plt.legend()
            plt.grid(True)
            plt.savefig(Path(self.output_path) / f"prf1_curves_{timestamp}.png")
            plt.close()
    
            plt.figure(figsize=(12, 8))
            plt.plot([m['train_auc_roc'] for m in train_metrics_history], label='Training AUC-ROC')
            plt.xlabel('Epoch')
            plt.ylabel('AUC-ROC')
            plt.title('Training AUC-ROC Curve')
            plt.legend()
            plt.grid(True)
            plt.savefig(Path(self.output_path) / f"auc_roc_curve_train_{timestamp}.png")
            plt.close()
    
            plt.figure(figsize=(8, 6))
            sns.heatmap(test_metrics['test_conf_matrix'], annot=True, fmt='d', cmap='Blues', cbar=False)
            plt.xlabel('Predicted')
            plt.ylabel('True')
            plt.title('Test Confusion Matrix')
            plt.savefig(Path(self.output_path) / f"confusion_matrix_test_{timestamp}.png")
            plt.close()
    
            fpr, tpr, _ = roc_curve(graph['review'].y[-num_test_rows:].cpu().numpy(), probs[-num_test_rows:])
            plt.figure(figsize=(10, 6))
            plt.plot(fpr, tpr, label=f'Test ROC Curve (AUC = {test_metrics["test_auc_roc"]:.4f})')
            plt.plot([0, 1], [0, 1], 'k--', label='Random Guess')
            plt.xlabel('False Positive Rate')
            plt.ylabel('True Positive Rate')
            plt.title('Test ROC Curve')
            plt.legend()
            plt.grid(True)
            plt.savefig(Path(self.output_path) / f"roc_curve_test_{timestamp}.png")
            plt.close()
    
            plt.figure(figsize=(8, 6))
            sns.heatmap(train_metrics['train_conf_matrix'], annot=True, fmt='d', cmap='Blues', cbar=False)
            plt.xlabel('Predicted')
            plt.ylabel('True')
            plt.title('Training Confusion Matrix (Final Epoch)')
            plt.savefig(Path(self.output_path) / f"confusion_matrix_train_{timestamp}.png")
            plt.close()
    
            fpr_train, tpr_train, _ = roc_curve(graph['review'].y[:num_rows].cpu().numpy(), probs[:num_rows])
            plt.figure(figsize=(10, 6))
            plt.plot(fpr_train, tpr_train, label=f'Training ROC Curve (AUC = {train_metrics["train_auc_roc"]:.4f})')
            plt.plot([0, 1], [0, 1], 'k--', label='Random Guess')
            plt.xlabel('False Positive Rate')
            plt.ylabel('True Positive Rate')
            plt.title('Training ROC Curve (Final Epoch)')
            plt.legend()
            plt.grid(True)
            plt.savefig(Path(self.output_path) / f"roc_curve_train_{timestamp}.png")
            plt.close()
    
            logger.info(f"All metrics, plots, and model saved to {self.output_path}")