Asilbek14's picture
Update app.py
af25cff verified
raw
history blame
5.06 kB
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import pipeline
# ---------------- CONFIG ----------------
MODEL_REPO = "HuggingFaceH4/zephyr-7b-beta"
TRANSLATOR_MODEL = "facebook/m2m100_418M" # multilingual translator
SYSTEM_PROMPT_DEFAULT = (
"You are Zephyr, a concise and polite AI assistant. "
"Always respond in a formal tone and provide only the direct answer unless the user requests more detail."
)
MAX_NEW_TOKENS_DEFAULT = 512 # increased to handle long answers
TEMP_DEFAULT = 0.7
TOP_P_DEFAULT = 0.95
MAX_HISTORY_MESSAGES = 10 # limit chat history to prevent repetition
# Clients
client = InferenceClient(MODEL_REPO)
translator = pipeline("translation", model=TRANSLATOR_MODEL)
# ---------------- HELPERS ----------------
def is_translation_request(message: str) -> bool:
triggers = ["translate", "traduce", "ترجم", "traduire", "übersetze"]
if any(t in message.lower() for t in triggers):
return True
non_ascii_ratio = sum(1 for c in message if ord(c) > 127) / max(len(message), 1)
return non_ascii_ratio > 0.4
# ---------------- CHAT FUNCTION ----------------
def stream_response(message, chat_history, system_message, max_tokens, temperature, top_p, response_style):
# --- Translation handling ---
if is_translation_request(message):
try:
translated = translator(message, src_lang="auto", tgt_lang="en")[0]["translation_text"]
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": translated})
yield "", chat_history
return
except Exception as e:
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": f"⚠️ Translation failed: {str(e)}"})
yield "", chat_history
return
# --- Apply response style ---
if response_style == "No explanation":
style_prompt = " Only provide the direct answer with no explanation."
elif response_style == "Short explanation":
style_prompt = " Provide a concise answer with a one-sentence explanation."
else: # Detailed explanation
style_prompt = " Provide a thorough and detailed answer with reasoning and examples."
# --- Prepare messages ---
# Only keep the last N messages to prevent repetition
truncated_history = chat_history[-MAX_HISTORY_MESSAGES:]
messages = [{"role": "system", "content": system_message + style_prompt}] + truncated_history
messages.append({"role": "user", "content": message})
# Append user and placeholder for assistant
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": ""})
response = ""
# --- Stream response ---
for msg in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = msg.choices[0].delta.content or ""
response += token
chat_history[-1]["content"] = response
yield "", chat_history
# Clear input box after streaming
yield "", chat_history
# ---------------- UI ----------------
with gr.Blocks(theme=gr.themes.Soft(primary_hue="violet", secondary_hue="pink")) as demo:
gr.Markdown("# 🤖 Zephyr-7B Chat + 🌍 Translator")
chatbot = gr.Chatbot(type="messages", height=500, show_copy_button=True, label="Chat Assistant")
with gr.Row():
msg = gr.Textbox(label="💬 Your Message", placeholder="Type here…", scale=6)
send_btn = gr.Button("🚀 Send", variant="primary", scale=1)
clear_btn = gr.Button("🧹 Clear Chat", scale=1)
with gr.Accordion("⚙️ Advanced Settings", open=False):
system_prompt = gr.Textbox(label="System Prompt", value=SYSTEM_PROMPT_DEFAULT, lines=3)
response_style = gr.Dropdown(
["No explanation", "Short explanation", "Detailed explanation"],
value="No explanation",
label="Response Style"
)
temperature = gr.Slider(0.1, 1.5, value=TEMP_DEFAULT, step=0.1, label="Temperature")
top_p = gr.Slider(0.1, 1.0, value=TOP_P_DEFAULT, step=0.05, label="Top-p")
max_tokens = gr.Slider(128, 2048, value=MAX_NEW_TOKENS_DEFAULT, step=16, label="Max new tokens")
# --- Events ---
send_btn.click(
stream_response,
[msg, chatbot, system_prompt, max_tokens, temperature, top_p, response_style],
[msg, chatbot]
)
msg.submit(
stream_response,
[msg, chatbot, system_prompt, max_tokens, temperature, top_p, response_style],
[msg, chatbot]
)
clear_btn.click(lambda: [], None, chatbot, queue=False)
gr.Markdown("---")
gr.Markdown("🔗 Built with ❤️ using [Zephyr-7B](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) & [M2M100](https://huggingface.co/facebook/m2m100_418M).")
if __name__ == "__main__":
demo.launch()