Spaces:
Sleeping
Sleeping
File size: 10,200 Bytes
94bb7cc 414282e ff572ab 414282e 9699f50 94bb7cc f5abf8e 94bb7cc f5abf8e 94bb7cc f5abf8e 94bb7cc f5abf8e 94bb7cc 7ec92a2 94bb7cc 1d855ad 94bb7cc 393ddde 1d7aeb7 94bb7cc 50f6fa7 ff51070 2e710e6 58f893d 2e710e6 f026b7e 2e710e6 5007470 2e710e6 5007470 2e710e6 25fbcd2 2e710e6 25fbcd2 2e710e6 dd9c5eb 1f13e88 ff51070 2e710e6 f026b7e 2e710e6 ce68165 2e710e6 5007470 2e710e6 25fbcd2 2e710e6 729660f 2e710e6 10075de 609e09b ff51070 1d855ad 2e710e6 1d855ad 2e710e6 94bb7cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import streamlit as st
import torch
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import torch
from transformers import AutoTokenizer, AutoModel #for embeddings
import os
from transformers import AutoTokenizer, AutoModelForMaskedLM
from datetime import datetime
tokenizer = AutoTokenizer.from_pretrained("AshenR/AshenBERTo")
modelBert = AutoModel.from_pretrained("AshenR/AshenBERTo",output_hidden_states=True)
ishape = (768)
def get_embeddings2(text, token_length, device='cuda'):
import torch
# Dynamically check if CUDA is available
device = torch.device(device if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
# Tokenize the input text
tokens = tokenizer(text, max_length=token_length, padding='max_length', truncation=True, return_tensors='pt')
# Move tensors to the specified device
input_ids = tokens.input_ids.to(device)
attention_mask = tokens.attention_mask.to(device)
# Move the model to the same device
modelBert.to(device)
# Get the model output
with torch.no_grad(): # Disable gradient calculation for inference
output = modelBert(input_ids, attention_mask=attention_mask).hidden_states[-1]
# Compute the mean of the output across the token dimension
mean_output = torch.mean(output, dim=1)
# Move the result back to CPU and convert to numpy
return mean_output.cpu().detach().numpy()
import tensorflow as tf
from tensorflow.keras import layers, Model, callbacks
from tensorflow.keras.layers import (
Dense, Dropout, BatchNormalization, Activation, Input, Bidirectional, LSTM, GlobalAveragePooling1D
)
from tensorflow.keras.regularizers import l2
import os
class SiameseNetwork(Model):
def __init__(self, inputShape, featExtractorConfig, lstm_units=128, dropout_rate=0.5,
add_lstm=True, distance_metric="concat", regularization=0.01):
super(SiameseNetwork, self).__init__()
self.inputShape = inputShape
self.featExtractorConfig = featExtractorConfig
self.add_lstm = add_lstm
self.lstm_units = lstm_units
self.dropout_rate = dropout_rate
self.distance_metric = distance_metric
self.regularization = regularization
# Define inputs
inp_a = layers.Input(shape=inputShape, name="Input_A")
inp_b = layers.Input(shape=inputShape, name="Input_B")
# Build shared feature extractor
self.feature_extractor = self.build_feature_extractor()
# Extract features
feats_a = self.feature_extractor(inp_a)
feats_b = self.feature_extractor(inp_b)
# Compute similarity
if distance_metric == "concat":
distance = layers.Concatenate()([feats_a, feats_b])
elif distance_metric == "euclidean":
distance = layers.Lambda(lambda tensors: tf.norm(tensors[0] - tensors[1], axis=1, keepdims=True))([feats_a, feats_b])
elif distance_metric == "cosine":
distance = layers.Lambda(lambda tensors: tf.keras.losses.cosine_similarity(tensors[0], tensors[1]))([feats_a, feats_b])
else:
raise ValueError(f"Unsupported distance metric: {distance_metric}")
# Output layer
outputs = layers.Dense(1, activation="sigmoid", name="Output")(distance)
# Define the model
self.model = Model(inputs=[inp_a, inp_b], outputs=outputs)
def build_feature_extractor(self):
inputs = Input(shape=self.inputShape)
x = inputs
# Add configurable dense layers with regularization
for n_units in self.featExtractorConfig:
x = Dense(n_units, activation=None, kernel_regularizer=l2(self.regularization))(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Dropout(self.dropout_rate)(x)
if self.add_lstm:
# Add sequence dimension for LSTM
x = layers.Reshape((-1, self.featExtractorConfig[-1]))(x)
# Add Bidirectional LSTM
x = Bidirectional(LSTM(self.lstm_units, return_sequences=True, dropout=self.dropout_rate))(x)
x = GlobalAveragePooling1D()(x) # Efficient pooling for dimensionality reduction
return Model(inputs, x, name="FeatureExtractor")
def call(self, inputs):
return self.model(inputs)
def save_model(self, filepath):
# Ensure the directory exists
os.makedirs(filepath, exist_ok=True)
# Save the entire model (architecture, weights, and compilation details)
self.model.save(os.path.join(filepath, 'siamese_model.keras'))
# Save model configuration for reconstruction
config = {
'inputShape': self.inputShape,
'featExtractorConfig': self.featExtractorConfig,
'lstm_units': self.lstm_units,
'dropout_rate': self.dropout_rate,
'add_lstm': self.add_lstm,
'distance_metric': self.distance_metric,
'regularization': self.regularization
}
# Save the configuration
import json
with open(os.path.join(filepath, 'model_config.json'), 'w') as f:
json.dump(config, f)
print(f"Model saved successfully to {filepath}")
@classmethod
def load_model(cls, filepath):
# Load the configuration
import json
with open(os.path.join(filepath, 'model_config.json'), 'r') as f:
config = json.load(f)
# Reconstruct the model using the saved configuration
siamese_net = cls(**config)
# Load the saved weights and compilation details
siamese_net.model = tf.keras.models.load_model(os.path.join(filepath, 'siamese_model.keras'))
print(f"Model loaded successfully from {filepath}")
return siamese_net
# loaded_siamese_net = SiameseNetwork.load_model('./saved_siamese_model')
@st.cache_resource
def predict(input_1, input_2):
loaded_siamese_net = SiameseNetwork.load_model('./saved_siamese_model')
x1_test = []
x2_test = []
embedding1 = get_embeddings2(input_1, token_length=100).reshape(ishape)
embedding2 = get_embeddings2(input_2, token_length=100).reshape(ishape)
x1_test.append(embedding1)
x2_test.append(embedding2)
x1_test = np.array(x1_test)
x2_test = np.array(x2_test)
pred = str(round(loaded_siamese_net.predict([x1_test,x2_test])[0][0]*100,2))+ " %"
result = f"Predicted Similarity: {pred}"
print(input_1,input_2,pred)
return result
# prompt: mongodb atlas python code
import pymongo
def connect_to_mongodb(connection_string):
try:
client = pymongo.MongoClient(connection_string)
# Perform a simple operation to verify the connection
client.admin.command('ismaster')
print("Successfully connected to MongoDB Atlas!")
return client
except pymongo.errors.ConnectionFailure as e:
print(f"Could not connect to MongoDB Atlas: {e}")
return None
# Replace with your actual connection string from MongoDB Atlas
# Initialize session state for feedback tracking
if "feedback_submitted" not in st.session_state:
st.session_state["feedback_submitted"] = False
if "show_feedback" not in st.session_state:
st.session_state["show_feedback"] = False
def save_feedback(input_1, input_2, prediction, rating, feedback):
connection_string = "mongodb+srv://ashen8810:Ashen12345@cluster0.t1w59.mongodb.net/?retryWrites=true&w=majority&appName=Cluster0"
client = connect_to_mongodb(connection_string)
if client:
try:
collection = client["user_predictions"]["survey"]
document = {
"timestamp": datetime.now(),
"input_1": str(input_1),
"input_2": str(input_2),
"prediction": str(prediction),
"rating": rating,
"feedback": str(feedback)
}
collection.insert_one(document)
print("Data Saved to mongoDB")
return True
except Exception as e:
st.error(f"Database Error: {e}")
return False
finally:
client.close()
# Initialize session state
if "feedback_submitted" not in st.session_state:
st.session_state.feedback_submitted = False
if "show_feedback" not in st.session_state:
st.session_state.show_feedback = False
# Page header
st.title("Sinhala Short Sentence Similarity")
st.write("Compare the similarity between two Sinhala sentences.")
input_1 = st.text_input("First Sentence:")
input_2 = st.text_input("Second Sentence:")
# Prediction section
if st.button("Compare Sentences", type="primary"):
if input_1 and input_2:
with st.spinner("Calculating similarity..."):
result = predict(input_1, input_2)
if result:
st.success(result)
st.session_state.show_feedback = True
save_feedback(input_1, input_2, result, 0, "Null")
else:
st.warning("Please enter both sentences to compare.")
# Feedback section
if st.session_state.show_feedback and not st.session_state.feedback_submitted:
st.subheader("Feedback")
is_correct = st.radio("Is this similarity assessment correct?", ("Yes", "No"))
if is_correct == "No":
rating = st.slider("How accurate was the prediction?", 0.0, 1.0, 0.5, 0.1)
feedback = st.text_area("Please provide detailed feedback:")
if st.button("Submit Feedback"):
if save_feedback(input_1, input_2, predict(input_1, input_2), rating, feedback):
st.success("Thank you for your feedback!")
st.session_state.feedback_submitted = True
if st.button("Clear"):
st.session_state.clear()
st.session_state.input_1 = ""
st.session_state.input_2 = ""
# Footer
st.markdown("""
<hr>
<p style="text-align: center; color: gray; font-size: 0.8em;">
Developed by Ashen | Version 1.0
</p>
""", unsafe_allow_html=True)
|