|
import streamlit as st |
|
import pandas as pd |
|
import plotly.express as px |
|
from pandasai import Agent |
|
from langchain_community.embeddings.openai import OpenAIEmbeddings |
|
from langchain_community.vectorstores import FAISS |
|
from langchain_openai import ChatOpenAI |
|
from langchain.chains import RetrievalQA |
|
from langchain.schema import Document |
|
import os |
|
import re |
|
|
|
|
|
st.title("Data Analyzer") |
|
|
|
|
|
api_key = os.getenv("OPENAI_API_KEY") |
|
pandasai_api_key = os.getenv("PANDASAI_API_KEY") |
|
|
|
if not api_key or not pandasai_api_key: |
|
st.warning("API keys for OpenAI or PandasAI are missing. Ensure both keys are set in environment variables.") |
|
|
|
|
|
if st.button("Reset Session"): |
|
for key in list(st.session_state.keys()): |
|
del st.session_state[key] |
|
st.experimental_rerun() |
|
|
|
|
|
def validate_and_clean_dataset(df): |
|
|
|
df.columns = [col.strip().lower().replace(" ", "_") for col in df.columns] |
|
|
|
if df.isnull().values.any(): |
|
st.warning("Dataset contains missing values. Consider cleaning the data.") |
|
return df |
|
|
|
|
|
def load_dataset_into_session(): |
|
input_option = st.radio( |
|
"Select Dataset Input:", |
|
["Use Repo Directory Dataset", "Use Hugging Face Dataset", "Upload CSV File"], |
|
) |
|
|
|
|
|
if input_option == "Use Repo Directory Dataset": |
|
file_path = "./source/test.csv" |
|
if st.button("Load Dataset"): |
|
try: |
|
st.session_state.df = pd.read_csv(file_path) |
|
st.session_state.df = validate_and_clean_dataset(st.session_state.df) |
|
st.success(f"File loaded successfully from '{file_path}'!") |
|
except Exception as e: |
|
st.error(f"Error loading dataset from the repo directory: {e}") |
|
|
|
|
|
elif input_option == "Use Hugging Face Dataset": |
|
dataset_name = st.text_input( |
|
"Enter Hugging Face Dataset Name:", value="HUPD/hupd" |
|
) |
|
if st.button("Load Hugging Face Dataset"): |
|
try: |
|
from datasets import load_dataset |
|
dataset = load_dataset(dataset_name, split="train", trust_remote_code=True) |
|
if hasattr(dataset, "to_pandas"): |
|
st.session_state.df = dataset.to_pandas() |
|
else: |
|
st.session_state.df = pd.DataFrame(dataset) |
|
st.session_state.df = validate_and_clean_dataset(st.session_state.df) |
|
st.success(f"Hugging Face Dataset '{dataset_name}' loaded successfully!") |
|
except Exception as e: |
|
st.error(f"Error loading Hugging Face dataset: {e}") |
|
|
|
|
|
elif input_option == "Upload CSV File": |
|
uploaded_file = st.file_uploader("Upload a CSV File:", type=["csv"]) |
|
if uploaded_file: |
|
try: |
|
st.session_state.df = pd.read_csv(uploaded_file) |
|
st.session_state.df = validate_and_clean_dataset(st.session_state.df) |
|
st.success("File uploaded successfully!") |
|
except Exception as e: |
|
st.error(f"Error reading uploaded file: {e}") |
|
|
|
load_dataset_into_session() |
|
|
|
|
|
if "df" in st.session_state and api_key and pandasai_api_key: |
|
|
|
os.environ["OPENAI_API_KEY"] = api_key |
|
os.environ["PANDASAI_API_KEY"] = pandasai_api_key |
|
|
|
df = st.session_state.df |
|
st.write("Dataset Preview:") |
|
st.write(df.head()) |
|
|
|
|
|
try: |
|
agent = Agent(df) |
|
st.info("PandasAI Agent initialized successfully.") |
|
except Exception as e: |
|
st.error(f"Error initializing PandasAI Agent: {str(e)}") |
|
|
|
|
|
try: |
|
documents = [ |
|
Document( |
|
page_content=", ".join([f"{col}: {row[col]}" for col in df.columns]), |
|
metadata={"index": index} |
|
) |
|
for index, row in df.iterrows() |
|
] |
|
st.info("Documents created successfully for RAG.") |
|
except Exception as e: |
|
st.error(f"Error creating documents for RAG: {str(e)}") |
|
|
|
|
|
try: |
|
embeddings = OpenAIEmbeddings() |
|
vectorstore = FAISS.from_documents(documents, embeddings) |
|
retriever = vectorstore.as_retriever() |
|
qa_chain = RetrievalQA.from_chain_type( |
|
llm=ChatOpenAI(), |
|
chain_type="stuff", |
|
retriever=retriever |
|
) |
|
st.info("RAG setup completed successfully.") |
|
except Exception as e: |
|
st.error(f"Error setting up RAG: {str(e)}") |
|
|
|
|
|
tab1, tab2, tab3 = st.tabs(["PandasAI Analysis", "RAG Q&A", "Data Visualization"]) |
|
|
|
with tab1: |
|
st.subheader("Data Analysis with PandasAI") |
|
pandas_question = st.text_input("Ask a question about the dataset (PandasAI):") |
|
if pandas_question: |
|
try: |
|
result = agent.chat(pandas_question) |
|
st.write("PandasAI Answer:", result) |
|
if hasattr(agent, "last_output"): |
|
st.write("PandasAI Intermediate Output:", agent.last_output) |
|
except Exception as e: |
|
st.error(f"PandasAI encountered an error: {str(e)}") |
|
|
|
if "patent_number" in pandas_question.lower() and "decision" in pandas_question.lower(): |
|
try: |
|
match = re.search(r'\d{7,}', pandas_question) |
|
if match: |
|
patent_number = match.group() |
|
decision = df.loc[df['patent_number'] == int(patent_number), 'decision'] |
|
st.write(f"Fallback Answer: The decision for patent {patent_number} is '{decision.iloc[0]}'.") |
|
else: |
|
st.write("Could not extract patent number from the query.") |
|
except Exception as fallback_error: |
|
st.error(f"Fallback processing failed: {fallback_error}") |
|
|
|
with tab2: |
|
st.subheader("Q&A with RAG") |
|
rag_question = st.text_input("Ask a question about the dataset (RAG):") |
|
if rag_question: |
|
try: |
|
result = qa_chain.run(rag_question) |
|
st.write("RAG Answer:", result) |
|
except Exception as e: |
|
st.error(f"RAG encountered an error: {str(e)}") |
|
|
|
with tab3: |
|
st.subheader("Data Visualization") |
|
viz_question = st.text_input("What kind of graph would you like? (e.g., 'Show a scatter plot of salary vs experience')") |
|
if viz_question: |
|
try: |
|
result = agent.chat(viz_question) |
|
code_pattern = r'```python\n(.*?)\n```' |
|
code_match = re.search(code_pattern, result, re.DOTALL) |
|
|
|
if code_match: |
|
viz_code = code_match.group(1) |
|
exec(viz_code) |
|
else: |
|
st.write("Unable to generate the graph. Showing fallback example.") |
|
fig = px.scatter(df, x=df.columns[0], y=df.columns[1]) |
|
st.plotly_chart(fig) |
|
except Exception as e: |
|
st.error(f"An error occurred during visualization: {str(e)}") |
|
else: |
|
if not api_key: |
|
st.warning("Please set the OpenAI API key in environment variables.") |
|
if not pandasai_api_key: |
|
st.warning("Please set the PandasAI API key in environment variables.") |