|
import streamlit as st |
|
import pandas as pd |
|
from pandasai import SmartDataframe |
|
from pandasai.llm import OpenAI |
|
from langchain_groq import ChatGroq |
|
from dotenv import load_dotenv |
|
from datasets import load_dataset |
|
import os |
|
|
|
def initialize_llm(model_choice): |
|
"""Initialize the chosen LLM based on the user's selection.""" |
|
groq_api_key = os.getenv("GROQ_API_KEY") |
|
openai_api_key = os.getenv("OPENAI_API_KEY") |
|
|
|
if model_choice == "llama-3.3-70b": |
|
if not groq_api_key: |
|
st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.") |
|
return None |
|
st.success("Using model: llama-3.3-70b (Groq)") |
|
return ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile") |
|
elif model_choice == "GPT-4o": |
|
if not openai_api_key: |
|
st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.") |
|
return None |
|
st.success("Using model: GPT-4o (OpenAI)") |
|
return OpenAI(api_token=openai_api_key) |
|
|
|
def load_dataset_into_session(): |
|
"""Load dataset from Hugging Face or via CSV upload.""" |
|
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"]) |
|
|
|
if input_option == "Use Hugging Face Dataset": |
|
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="HUPD/hupd") |
|
if st.button("Load Dataset"): |
|
try: |
|
dataset = load_dataset( |
|
dataset_name, |
|
name="sample", |
|
split="train", |
|
trust_remote_code=True, |
|
uniform_split=True |
|
) |
|
st.session_state.df = pd.DataFrame(dataset) |
|
st.success(f"Dataset '{dataset_name}' loaded successfully!") |
|
st.dataframe(st.session_state.df.head(10)) |
|
except Exception as e: |
|
st.error(f"Error loading dataset: {e}") |
|
|
|
elif input_option == "Upload CSV File": |
|
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"]) |
|
if uploaded_file: |
|
try: |
|
st.session_state.df = pd.read_csv(uploaded_file) |
|
st.success("File uploaded successfully!") |
|
st.dataframe(st.session_state.df.head(10)) |
|
except Exception as e: |
|
st.error(f"Error reading file: {e}") |
|
|
|
if "df" not in st.session_state: |
|
st.session_state.df = None |
|
|
|
|
|
st.title("Chat With Your Dataset Using PandasAI") |
|
|
|
|
|
st.sidebar.title("Choose Your LLM") |
|
model_choice = st.sidebar.radio( |
|
"Select a model:", |
|
("GPT-4o", "llama-3.3-70b"), |
|
help="Choose between OpenAI GPT-4o or Groq Llama-3.3-70b." |
|
) |
|
|
|
|
|
llm = initialize_llm(model_choice) |
|
if not llm: |
|
st.stop() |
|
|
|
|
|
st.header("Dataset Selection") |
|
load_dataset_into_session() |
|
|
|
|
|
if st.session_state.df is not None: |
|
st.subheader("Ask Questions About Your Dataset") |
|
chat_df = SmartDataframe(st.session_state.df, config={"llm": llm}) |
|
|
|
user_query = st.text_input("Ask a question about your data:", "") |
|
if user_query: |
|
try: |
|
response = chat_df.chat(user_query) |
|
st.write("### Response:") |
|
st.write(response) |
|
|
|
|
|
if any(keyword in user_query.lower() for keyword in ["plot", "graph", "draw", "visualize", "chart", "visualise"]): |
|
st.write("### Generating Plot...") |
|
try: |
|
chat_df.chat(user_query) |
|
except Exception as e: |
|
st.error(f"An error occurred while generating the plot: {e}") |
|
except Exception as e: |
|
st.error(f"An error occurred: {e}") |
|
else: |
|
st.info("Please load a dataset to start interacting.") |
|
|