File size: 6,762 Bytes
3dc0491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import streamlit as st
import pandas as pd
import plotly.express as px
from datasets import load_dataset
from pandasai import Agent
from langchain_community.embeddings.openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_openai import ChatOpenAI
from langchain.chains import RetrievalQA
from langchain.schema import Document
import os
import logging

# Configure logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

# Fetch API keys from environment variables
api_key = os.getenv("OPENAI_API_KEY")
pandasai_api_key = os.getenv("PANDASAI_API_KEY")

# Check for missing keys and raise specific errors
missing_keys = []
if not api_key:
    missing_keys.append("OPENAI_API_KEY")
if not pandasai_api_key:
    missing_keys.append("PANDASAI_API_KEY")

if missing_keys:
    missing_keys_str = ", ".join(missing_keys)
    raise EnvironmentError(
        f"The following API key(s) are missing: {missing_keys_str}. Please set them in the environment."
    )

# Title of the app
st.title("Data Analyzer")

# Function to load datasets into session
def load_dataset_into_session():
    input_option = st.radio(
        "Select Dataset Input:",
        ["Use Repo Directory Dataset", "Use Hugging Face Dataset", "Upload CSV File"],
    )

    # Option 1: Load dataset from the repo directory
    if input_option == "Use Repo Directory Dataset":
        file_path = "./source/test.csv"
        if st.button("Load Repo Dataset"):
            try:
                st.session_state.df = pd.read_csv(file_path)
                st.success(f"File loaded successfully from '{file_path}'!")
                st.dataframe(st.session_state.df.head(10))
            except Exception as e:
                st.error(f"Error loading dataset from the repo directory: {e}")
                logger.error(f"Error loading dataset from repo directory: {e}")

    # Option 2: Load dataset from Hugging Face
    elif input_option == "Use Hugging Face Dataset":
        dataset_name = st.text_input(
            "Enter Hugging Face Dataset Name:", value="HUPD/hupd"
        )
        if st.button("Load Hugging Face Dataset"):
            try:
                dataset = load_dataset(dataset_name, split="train", trust_remote_code=True)
                # Convert Hugging Face dataset to Pandas DataFrame
                if hasattr(dataset, "to_pandas"):
                    st.session_state.df = dataset.to_pandas()
                else:
                    st.session_state.df = pd.DataFrame(dataset)
                st.success(f"Hugging Face Dataset '{dataset_name}' loaded successfully!")
                st.dataframe(st.session_state.df.head(10))
            except Exception as e:
                st.error(f"Error loading Hugging Face dataset: {e}")
                logger.error(f"Error loading Hugging Face dataset: {e}")

    # Option 3: Upload CSV File
    elif input_option == "Upload CSV File":
        uploaded_file = st.file_uploader("Upload a CSV File:", type=["csv"])
        if uploaded_file:
            try:
                st.session_state.df = pd.read_csv(uploaded_file)
                st.success("File uploaded successfully!")
                st.dataframe(st.session_state.df.head(10))
            except Exception as e:
                st.error(f"Error reading uploaded file: {e}")
                logger.error(f"Error reading uploaded file: {e}")

# Ensure session state for the DataFrame
if "df" not in st.session_state:
    st.session_state.df = None

# Load dataset into session
load_dataset_into_session()

# Check if a dataset is loaded
if st.session_state.df is not None:
    df = st.session_state.df
    try:
        # Initialize PandasAI Agent
        agent = Agent(df)

        # Convert DataFrame to documents for RAG
        documents = [
            Document(
                page_content=", ".join(
                    [f"{col}: {row[col]}" for col in df.columns if pd.notnull(row[col])]
                ),
                metadata={"index": index},
            )
            for index, row in df.iterrows()
        ]

        # Set up RAG
        embeddings = OpenAIEmbeddings()
        vectorstore = FAISS.from_documents(documents, embeddings)
        retriever = vectorstore.as_retriever()
        qa_chain = RetrievalQA.from_chain_type(
            llm=ChatOpenAI(),
            chain_type="stuff",
            retriever=retriever,
        )

        # Create tabs
        tab1, tab2, tab3 = st.tabs(
            ["PandasAI Analysis", "RAG Q&A", "Data Visualization"]
        )

        # Tab 1: PandasAI Analysis
        with tab1:
            st.header("PandasAI Analysis")
            pandas_question = st.text_input("Ask a question about the data (PandasAI):")
            if pandas_question:
                try:
                    result = agent.chat(pandas_question)
                    st.write("PandasAI Answer:", result)
                except Exception as e:
                    st.error(f"Error during PandasAI Analysis: {e}")

        # Tab 2: RAG Q&A
        with tab2:
            st.header("RAG Q&A")
            rag_question = st.text_input("Ask a question about the data (RAG):")
            if rag_question:
                try:
                    result = qa_chain.run(rag_question)
                    st.write("RAG Answer:", result)
                except Exception as e:
                    st.error(f"Error during RAG Q&A: {e}")

        # Tab 3: Data Visualization
        with tab3:
            st.header("Data Visualization")
            viz_question = st.text_input(
                "What kind of graph would you like to create? (e.g., 'Show a scatter plot of salary vs experience')"
            )
            if viz_question:
                try:
                    result = agent.chat(viz_question)

                    # Extract Python code for visualization
                    import re

                    code_pattern = r"```python\n(.*?)\n```"
                    code_match = re.search(code_pattern, result, re.DOTALL)

                    if code_match:
                        viz_code = code_match.group(1)
                        # Replace matplotlib (plt) code with Plotly (px)
                        viz_code = viz_code.replace("plt.", "px.")
                        exec(viz_code)  # Execute the visualization code
                        st.plotly_chart(fig)
                    else:
                        st.warning("Could not generate a graph. Try a different query.")
                except Exception as e:
                    st.error(f"Error during Data Visualization: {e}")
    except Exception as e:
        st.error(f"An error occurred during processing: {e}")
else:
    st.info("Please load a dataset to start analysis.")