|
from transformers import pipeline |
|
import gradio as gr |
|
|
|
asr = pipeline(task="automatic-speech-recognition", |
|
model="openai/whisper-medium") |
|
|
|
|
|
asr.model.config.forced_decoder_ids = asr.tokenizer.get_decoder_prompt_ids(language="spanish", task="transcribe") |
|
|
|
demo = gr.Blocks() |
|
|
|
def transcribe_long_form(filepath): |
|
if filepath is None: |
|
gr.Warning("No audio found, please retry.") |
|
return "" |
|
output = asr( |
|
filepath, |
|
max_new_tokens=256, |
|
chunk_length_s=30, |
|
batch_size=8, |
|
) |
|
return output["text"] |
|
|
|
ner = pipeline("ner", |
|
model="mrm8488/bert-spanish-cased-finetuned-ner", |
|
) |
|
|
|
def get_ner(input_text): |
|
if input_text is None: |
|
gr.Warning("No transcription found, please retry.") |
|
return {"text": "", "entities": ""} |
|
output = ner(input_text) |
|
return {"text": input_text, "entities": output} |
|
|
|
def main(filepath): |
|
transcription = transcribe_long_form(filepath) |
|
ner = get_ner(transcription) |
|
return transcription, ner |
|
|
|
mic_transcribe = gr.Interface( |
|
fn=main, |
|
inputs=gr.Audio(sources="microphone", |
|
type="filepath"), |
|
outputs=[gr.Textbox(label="Transcription", lines=3), |
|
gr.HighlightedText(label="Text with entities")], |
|
title="Transcribir audio desde grabaci贸n", |
|
description="Transcripci贸n de audio grabado desde micr贸fono.", |
|
allow_flagging="never") |
|
|
|
file_transcribe = gr.Interface( |
|
fn=main, |
|
inputs=gr.Audio(sources="upload", |
|
type="filepath"), |
|
outputs=[gr.Textbox(label="Transcription", lines=3), |
|
gr.HighlightedText(label="Text with entities")], |
|
title="Transcribir audio desde archivo", |
|
description="Transcripci贸n a partir de un archivo de audio.", |
|
allow_flagging="never", |
|
) |
|
|
|
with demo: |
|
gr.TabbedInterface( |
|
[mic_transcribe, |
|
file_transcribe], |
|
["Transcribe Microphone", |
|
"Transcribe Audio File"], |
|
) |
|
demo.launch() |
|
|