Spaces:
Runtime error
Runtime error
| import logging | |
| import os | |
| from json import loads | |
| import av | |
| from torch import load, FloatTensor | |
| from numpy import float32 | |
| import librosa | |
| class HParams(): | |
| def __init__(self, **kwargs): | |
| for k, v in kwargs.items(): | |
| if type(v) == dict: | |
| v = HParams(**v) | |
| self[k] = v | |
| def keys(self): | |
| return self.__dict__.keys() | |
| def items(self): | |
| return self.__dict__.items() | |
| def values(self): | |
| return self.__dict__.values() | |
| def __len__(self): | |
| return len(self.__dict__) | |
| def __getitem__(self, key): | |
| return getattr(self, key) | |
| def __setitem__(self, key, value): | |
| return setattr(self, key, value) | |
| def __contains__(self, key): | |
| return key in self.__dict__ | |
| def __repr__(self): | |
| return self.__dict__.__repr__() | |
| def load_checkpoint(checkpoint_path, model): | |
| checkpoint_dict = load(checkpoint_path, map_location='cpu') | |
| iteration = checkpoint_dict['iteration'] | |
| saved_state_dict = checkpoint_dict['model'] | |
| if hasattr(model, 'module'): | |
| state_dict = model.module.state_dict() | |
| else: | |
| state_dict = model.state_dict() | |
| new_state_dict = {} | |
| for k, v in state_dict.items(): | |
| try: | |
| new_state_dict[k] = saved_state_dict[k] | |
| except: | |
| logging.info("%s is not in the checkpoint" % k) | |
| new_state_dict[k] = v | |
| if hasattr(model, 'module'): | |
| model.module.load_state_dict(new_state_dict) | |
| else: | |
| model.load_state_dict(new_state_dict) | |
| logging.info("Loaded checkpoint '{}' (iteration {})".format( | |
| checkpoint_path, iteration)) | |
| return | |
| def get_hparams_from_file(config_path): | |
| with open(config_path, 'r', encoding='utf-8') as f: | |
| data = f.read() | |
| config = loads(data) | |
| hparams = HParams(**config) | |
| return hparams | |
| def load_audio_to_torch(full_path, target_sampling_rate): | |
| audio, sampling_rate = librosa.load(full_path, sr=target_sampling_rate, mono=True) | |
| return FloatTensor(audio.astype(float32)) | |
| def wav2ogg(input, output): | |
| with av.open(input, 'rb') as i: | |
| with av.open(output, 'wb', format='ogg') as o: | |
| out_stream = o.add_stream('libvorbis') | |
| for frame in i.decode(audio=0): | |
| for p in out_stream.encode(frame): | |
| o.mux(p) | |
| for p in out_stream.encode(None): | |
| o.mux(p) | |
| def wav2mp3(input, output): | |
| with av.open(input, 'rb') as i: | |
| with av.open(output, 'wb', format='mp3') as o: | |
| out_stream = o.add_stream('mp3') | |
| for frame in i.decode(audio=0): | |
| for p in out_stream.encode(frame): | |
| o.mux(p) | |
| for p in out_stream.encode(None): | |
| o.mux(p) | |
| def clean_folder(folder_path): | |
| for filename in os.listdir(folder_path): | |
| file_path = os.path.join(folder_path, filename) | |
| # å¦‚æžœæ˜¯æ–‡ä»¶ï¼Œåˆ™åˆ é™¤æ–‡ä»¶ | |
| if os.path.isfile(file_path): | |
| os.remove(file_path) | |
| # is none -> True, is not none -> False | |
| def check_is_none(s): | |
| return s is None or (isinstance(s, str) and str(s).isspace()) or str(s) == "" | |