Spaces:
Running
Running
File size: 4,765 Bytes
fd8cfcd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
importScripts('https://cdn.jsdelivr.net/npm/@tensorflow/[email protected]/dist/tf.min.js')
importScripts('agent_sac.js')
importScripts('reply_buffer.js')
;(async () => {
const DISABLED = false
const agent = new AgentSac({batchSize: 100, verbose: true})
await agent.init()
await agent.checkpoint() // overwrite
agent.actor.summary()
self.postMessage({weights: await Promise.all(agent.actor.getWeights().map(w => w.array()))}) // syncronize
const rb = new ReplyBuffer(50000, ({ state: [telemetry, frameL, frameR], action, reward }) => {
frameL.dispose()
frameR.dispose()
telemetry.dispose()
action.dispose()
reward.dispose()
})
/**
* Worker.
*
* @returns delay in ms to get ready for the next job
*/
const job = async () => {
// throw 'disabled'
if (DISABLED) return 99999
if (rb.size < agent._batchSize*10) return 1000
const samples = rb.sample(agent._batchSize) // time fast
if (!samples.length) return 1000
const
framesL = [],
framesR = [],
telemetries = [],
actions = [],
rewards = [],
nextFramesL = [],
nextFramesR = [],
nextTelemetries = []
for (const {
state: [telemetry, frameL, frameR],
action,
reward,
nextState: [nextTelemetry, nextFrameL, nextFrameR]
} of samples) {
framesL.push(frameL)
framesR.push(frameR)
telemetries.push(telemetry)
actions.push(action)
rewards.push(reward)
nextFramesL.push(nextFrameL)
nextFramesR.push(nextFrameR)
nextTelemetries.push(nextTelemetry)
}
tf.tidy(() => {
console.time('train')
agent.train({
state: [tf.stack(telemetries), tf.stack(framesL), tf.stack(framesR)],
action: tf.stack(actions),
reward: tf.stack(rewards),
nextState: [tf.stack(nextTelemetries), tf.stack(nextFramesL), tf.stack(nextFramesR)]
})
console.timeEnd('train')
})
console.time('train postMessage')
self.postMessage({
weights: await Promise.all(agent.actor.getWeights().map(w => w.array()))
})
console.timeEnd('train postMessage')
return 1
}
/**
* Executes job.
*/
const tick = async () => {
try {
setTimeout(tick, await job())
} catch (e) {
console.error(e)
setTimeout(tick, 5000) // show must go on (҂◡_◡) ᕤ
}
}
setTimeout(tick, 1000)
/**
* Decode transition from the main thread.
*
* @param {{ id, state, action, reward }} transition
* @returns
*/
const decodeTransition = transition => {
let { id, state: [telemetry, frameL, frameR], action, reward, priority } = transition
return tf.tidy(() => {
state = [
tf.tensor1d(telemetry),
tf.tensor3d(frameL, agent._frameStackShape),
tf.tensor3d(frameR, agent._frameStackShape)
]
action = tf.tensor1d(action)
reward = tf.tensor1d([reward])
return { id, state, action, reward, priority }
})
}
let i = 0
self.addEventListener('message', async e => {
i++
if (DISABLED) return
if (i%50 === 0) console.log('RBSIZE: ', rb.size)
switch (e.data.action) {
case 'newTransition':
const transition = decodeTransition(e.data.transition)
rb.add(transition)
tf.tidy(()=> {
return
const {
state: [telemetry, frameL, frameR],
action,
} = transition;
const state = [tf.stack([telemetry]), tf.stack([frameL]), tf.stack([frameR])]
const q1TargValue = agent.q1Targ.predict([...state, tf.stack([action])], {batchSize: 1})
const q2TargValue = agent.q2Targ.predict([...state, tf.stack([action])], {batchSize: 1})
console.log('value', Math.min(q1TargValue.arraySync()[0][0], q2TargValue.arraySync()[0][0]).toFixed(5))
})
break
default:
console.warn('Unknown action')
break
}
if (i % rb._limit === 0)
agent.checkpoint() // timer ~ 500ms, don't await intentionally
})
})()
|