File size: 6,917 Bytes
			
			| 7bc29af | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 | # File under the MIT license, see https://github.com/adefossez/julius/LICENSE for details.
# Author: adefossez, 2020
"""
FIR windowed sinc lowpass filters.
"""
import math
from typing import Sequence, Optional
import torch
from torch.nn import functional as F
from .core import sinc
from .fftconv import fft_conv1d
from .utils import simple_repr
class LowPassFilters(torch.nn.Module):
    """
    Bank of low pass filters. Note that a high pass or band pass filter can easily
    be implemented by substracting a same signal processed with low pass filters with different
    frequencies (see `julius.bands.SplitBands` for instance).
    This uses a windowed sinc filter, very similar to the one used in
    `julius.resample`. However, because we do not change the sample rate here,
    this filter can be much more efficiently implemented using the FFT convolution from
    `julius.fftconv`.
    Args:
        cutoffs (list[float]): list of cutoff frequencies, in [0, 0.5] expressed as `f/f_s` where
            f_s is the samplerate and `f` is the cutoff frequency.
            The upper limit is 0.5, because a signal sampled at `f_s` contains only
            frequencies under `f_s / 2`.
        stride (int): how much to decimate the output. Keep in mind that decimation
            of the output is only acceptable if the cutoff frequency is under `1/ (2 * stride)`
            of the original sampling rate.
        pad (bool): if True, appropriately pad the input with zero over the edge. If `stride=1`,
            the output will have the same length as the input.
        zeros (float): Number of zero crossings to keep.
            Controls the receptive field of the Finite Impulse Response filter.
            For lowpass filters with low cutoff frequency, e.g. 40Hz at 44.1kHz,
            it is a bad idea to set this to a high value.
            This is likely appropriate for most use. Lower values
            will result in a faster filter, but with a slower attenuation around the
            cutoff frequency.
        fft (bool or None): if True, uses `julius.fftconv` rather than PyTorch convolutions.
            If False, uses PyTorch convolutions. If None, either one will be chosen automatically
            depending on the effective filter size.
    ..warning::
        All the filters will use the same filter size, aligned on the lowest
        frequency provided. If you combine a lot of filters with very diverse frequencies, it might
        be more efficient to split them over multiple modules with similar frequencies.
    ..note::
        A lowpass with a cutoff frequency of 0 is defined as the null function
        by convention here. This allows for a highpass with a cutoff of 0 to
        be equal to identity, as defined in `julius.filters.HighPassFilters`.
    Shape:
        - Input: `[*, T]`
        - Output: `[F, *, T']`, with `T'=T` if `pad` is True and `stride` is 1, and
            `F` is the numer of cutoff frequencies.
    >>> lowpass = LowPassFilters([1/4])
    >>> x = torch.randn(4, 12, 21, 1024)
    >>> list(lowpass(x).shape)
    [1, 4, 12, 21, 1024]
    """
    def __init__(self, cutoffs: Sequence[float], stride: int = 1, pad: bool = True,
                 zeros: float = 8, fft: Optional[bool] = None):
        super().__init__()
        self.cutoffs = list(cutoffs)
        if min(self.cutoffs) < 0:
            raise ValueError("Minimum cutoff must be larger than zero.")
        if max(self.cutoffs) > 0.5:
            raise ValueError("A cutoff above 0.5 does not make sense.")
        self.stride = stride
        self.pad = pad
        self.zeros = zeros
        self.half_size = int(zeros / min([c for c in self.cutoffs if c > 0]) / 2)
        if fft is None:
            fft = self.half_size > 32
        self.fft = fft
        window = torch.hann_window(2 * self.half_size + 1, periodic=False)
        time = torch.arange(-self.half_size, self.half_size + 1)
        filters = []
        for cutoff in cutoffs:
            if cutoff == 0:
                filter_ = torch.zeros_like(time)
            else:
                filter_ = 2 * cutoff * window * sinc(2 * cutoff * math.pi * time)
                # Normalize filter to have sum = 1, otherwise we will have a small leakage
                # of the constant component in the input signal.
                filter_ /= filter_.sum()
            filters.append(filter_)
        self.register_buffer("filters", torch.stack(filters)[:, None])
    def forward(self, input):
        shape = list(input.shape)
        input = input.view(-1, 1, shape[-1])
        if self.pad:
            input = F.pad(input, (self.half_size, self.half_size), mode='replicate')
        if self.fft:
            out = fft_conv1d(input, self.filters, stride=self.stride)
        else:
            out = F.conv1d(input, self.filters, stride=self.stride)
        shape.insert(0, len(self.cutoffs))
        shape[-1] = out.shape[-1]
        return out.permute(1, 0, 2).reshape(shape)
    def __repr__(self):
        return simple_repr(self)
class LowPassFilter(torch.nn.Module):
    """
    Same as `LowPassFilters` but applies a single low pass filter.
    Shape:
        - Input: `[*, T]`
        - Output: `[*, T']`, with `T'=T` if `pad` is True and `stride` is 1.
    >>> lowpass = LowPassFilter(1/4, stride=2)
    >>> x = torch.randn(4, 124)
    >>> list(lowpass(x).shape)
    [4, 62]
    """
    def __init__(self, cutoff: float, stride: int = 1, pad: bool = True,
                 zeros: float = 8, fft: Optional[bool] = None):
        super().__init__()
        self._lowpasses = LowPassFilters([cutoff], stride, pad, zeros, fft)
    @property
    def cutoff(self):
        return self._lowpasses.cutoffs[0]
    @property
    def stride(self):
        return self._lowpasses.stride
    @property
    def pad(self):
        return self._lowpasses.pad
    @property
    def zeros(self):
        return self._lowpasses.zeros
    @property
    def fft(self):
        return self._lowpasses.fft
    def forward(self, input):
        return self._lowpasses(input)[0]
    def __repr__(self):
        return simple_repr(self)
def lowpass_filters(input: torch.Tensor,  cutoffs: Sequence[float],
                    stride: int = 1, pad: bool = True,
                    zeros: float = 8, fft: Optional[bool] = None):
    """
    Functional version of `LowPassFilters`, refer to this class for more information.
    """
    return LowPassFilters(cutoffs, stride, pad, zeros, fft).to(input)(input)
def lowpass_filter(input: torch.Tensor,  cutoff: float,
                   stride: int = 1, pad: bool = True,
                   zeros: float = 8, fft: Optional[bool] = None):
    """
    Same as `lowpass_filters` but with a single cutoff frequency.
    Output will not have a dimension inserted in the front.
    """
    return lowpass_filters(input, [cutoff], stride, pad, zeros, fft)[0]
 | 
