Update app.py
Browse files
app.py
CHANGED
|
@@ -2,7 +2,7 @@ import gradio as gr
|
|
| 2 |
import requests
|
| 3 |
import random
|
| 4 |
import os
|
| 5 |
-
import zipfile
|
| 6 |
import librosa
|
| 7 |
import time
|
| 8 |
from infer_rvc_python import BaseLoader
|
|
@@ -11,7 +11,8 @@ from tts_voice import tts_order_voice
|
|
| 11 |
import edge_tts
|
| 12 |
import tempfile
|
| 13 |
import anyio
|
| 14 |
-
|
|
|
|
| 15 |
|
| 16 |
language_dict = tts_order_voice
|
| 17 |
|
|
@@ -25,6 +26,7 @@ async def text_to_speech_edge(text, language_code):
|
|
| 25 |
|
| 26 |
return tmp_path
|
| 27 |
|
|
|
|
| 28 |
try:
|
| 29 |
import spaces
|
| 30 |
spaces_status = True
|
|
@@ -32,7 +34,7 @@ except ImportError:
|
|
| 32 |
spaces_status = False
|
| 33 |
|
| 34 |
separator = Separator()
|
| 35 |
-
converter = BaseLoader(only_cpu=False, hubert_path=None, rmvpe_path=None)
|
| 36 |
|
| 37 |
global pth_file
|
| 38 |
global index_file
|
|
@@ -50,55 +52,79 @@ PITCH_ALGO_OPT = [
|
|
| 50 |
"rmvpe",
|
| 51 |
"rmvpe+",
|
| 52 |
]
|
| 53 |
-
UVR_5_MODELS = [
|
| 54 |
-
{"model_name": "BS-Roformer-Viperx-1297", "checkpoint": "model_bs_roformer_ep_317_sdr_12.9755.ckpt"},
|
| 55 |
-
{"model_name": "MDX23C-InstVoc HQ 2", "checkpoint": "MDX23C-8KFFT-InstVoc_HQ_2.ckpt"},
|
| 56 |
-
{"model_name": "Kim Vocal 2", "checkpoint": "Kim_Vocal_2.onnx"},
|
| 57 |
-
{"model_name": "5_HP-Karaoke", "checkpoint": "5_HP-Karaoke-UVR.pth"},
|
| 58 |
-
{"model_name": "UVR-DeNoise by FoxJoy", "checkpoint": "UVR-DeNoise.pth"},
|
| 59 |
-
{"model_name": "UVR-DeEcho-DeReverb by FoxJoy", "checkpoint": "UVR-DeEcho-DeReverb.pth"},
|
| 60 |
-
]
|
| 61 |
|
| 62 |
os.makedirs(TEMP_DIR, exist_ok=True)
|
| 63 |
|
| 64 |
def unzip_file(file):
|
| 65 |
-
filename = os.path.basename(file).split(".")[0]
|
| 66 |
with zipfile.ZipFile(file, 'r') as zip_ref:
|
| 67 |
-
zip_ref.extractall(os.path.join(TEMP_DIR, filename))
|
| 68 |
return True
|
| 69 |
-
|
| 70 |
|
| 71 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
return "[" + "=" * int(current / total * 20) + ">" + " " * (20 - int(current / total * 20)) + "] " + str(int(current / total * 100)) + "%"
|
| 73 |
|
| 74 |
def download_from_url(url, filename=None):
|
| 75 |
if "/blob/" in url:
|
| 76 |
-
url = url.replace("/blob/", "/resolve/")
|
| 77 |
if "huggingface" not in url:
|
| 78 |
return ["The URL must be from huggingface", "Failed", "Failed"]
|
| 79 |
if filename is None:
|
| 80 |
filename = os.path.join(TEMP_DIR, MODEL_PREFIX + str(random.randint(1, 1000)) + ".zip")
|
| 81 |
response = requests.get(url)
|
| 82 |
-
total = int(response.headers.get('content-length', 0))
|
| 83 |
if total > 500000000:
|
| 84 |
|
| 85 |
return ["The file is too large. You can only download files up to 500 MB in size.", "Failed", "Failed"]
|
| 86 |
current = 0
|
| 87 |
with open(filename, "wb") as f:
|
| 88 |
-
for data in response.iter_content(chunk_size=4096):
|
| 89 |
f.write(data)
|
| 90 |
current += len(data)
|
| 91 |
print(progress_bar(total, current), end="\r")
|
| 92 |
|
| 93 |
|
|
|
|
| 94 |
try:
|
| 95 |
unzip_file(filename)
|
| 96 |
except Exception as e:
|
| 97 |
-
return ["Failed to unzip the file", "Failed", "Failed"]
|
| 98 |
-
unzipped_dir = os.path.join(TEMP_DIR, os.path.basename(filename).split(".")[0])
|
| 99 |
pth_files = []
|
| 100 |
index_files = []
|
| 101 |
-
for root, dirs, files in os.walk(unzipped_dir):
|
| 102 |
for file in files:
|
| 103 |
if file.endswith(".pth"):
|
| 104 |
pth_files.append(os.path.join(root, file))
|
|
@@ -158,7 +184,7 @@ def calculate_remaining_time(epochs, seconds_per_epoch):
|
|
| 158 |
else:
|
| 159 |
return f"{int(hours)} hours and {int(minutes)} minutes"
|
| 160 |
|
| 161 |
-
def inf_handler(audio, model_name):
|
| 162 |
model_found = False
|
| 163 |
for model_info in UVR_5_MODELS:
|
| 164 |
if model_info["model_name"] == model_name:
|
|
|
|
| 2 |
import requests
|
| 3 |
import random
|
| 4 |
import os
|
| 5 |
+
import zipfile
|
| 6 |
import librosa
|
| 7 |
import time
|
| 8 |
from infer_rvc_python import BaseLoader
|
|
|
|
| 11 |
import edge_tts
|
| 12 |
import tempfile
|
| 13 |
import anyio
|
| 14 |
+
import asyncio
|
| 15 |
+
from audio_separator.separator import Separator
|
| 16 |
|
| 17 |
language_dict = tts_order_voice
|
| 18 |
|
|
|
|
| 26 |
|
| 27 |
return tmp_path
|
| 28 |
|
| 29 |
+
# fucking dogshit toggle
|
| 30 |
try:
|
| 31 |
import spaces
|
| 32 |
spaces_status = True
|
|
|
|
| 34 |
spaces_status = False
|
| 35 |
|
| 36 |
separator = Separator()
|
| 37 |
+
converter = BaseLoader(only_cpu=False, hubert_path=None, rmvpe_path=None)
|
| 38 |
|
| 39 |
global pth_file
|
| 40 |
global index_file
|
|
|
|
| 52 |
"rmvpe",
|
| 53 |
"rmvpe+",
|
| 54 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
os.makedirs(TEMP_DIR, exist_ok=True)
|
| 57 |
|
| 58 |
def unzip_file(file):
|
| 59 |
+
filename = os.path.basename(file).split(".")[0]
|
| 60 |
with zipfile.ZipFile(file, 'r') as zip_ref:
|
| 61 |
+
zip_ref.extractall(os.path.join(TEMP_DIR, filename))
|
| 62 |
return True
|
|
|
|
| 63 |
|
| 64 |
+
def get_training_info(audio_file):
|
| 65 |
+
if audio_file is None:
|
| 66 |
+
return 'Please provide an audio file!'
|
| 67 |
+
duration = get_audio_duration(audio_file)
|
| 68 |
+
sample_rate = wave.open(audio_file, 'rb').getframerate()
|
| 69 |
+
|
| 70 |
+
training_info = {
|
| 71 |
+
(0, 2): (150, 'OV2'),
|
| 72 |
+
(2, 3): (200, 'OV2'),
|
| 73 |
+
(3, 5): (250, 'OV2'),
|
| 74 |
+
(5, 10): (300, 'Normal'),
|
| 75 |
+
(10, 25): (500, 'Normal'),
|
| 76 |
+
(25, 45): (700, 'Normal'),
|
| 77 |
+
(45, 60): (1000, 'Normal')
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
for (min_duration, max_duration), (epochs, pretrain) in training_info.items():
|
| 81 |
+
if min_duration <= duration < max_duration:
|
| 82 |
+
break
|
| 83 |
+
else:
|
| 84 |
+
return 'Duration is not within the specified range!'
|
| 85 |
+
|
| 86 |
+
return f'You should use the **{pretrain}** pretrain with **{epochs}** epochs at **{sample_rate/1000}khz** sample rate.'
|
| 87 |
+
|
| 88 |
+
def on_button_click(audio_file_path):
|
| 89 |
+
return get_training_info(audio_file_path)
|
| 90 |
+
|
| 91 |
+
def get_audio_duration(audio_file_path):
|
| 92 |
+
audio_info = sf.info(audio_file_path)
|
| 93 |
+
duration_minutes = audio_info.duration / 60
|
| 94 |
+
return duration_minutes
|
| 95 |
+
|
| 96 |
+
def progress_bar(total, current): # best progress bar ever trust me sunglasses emoji 😎
|
| 97 |
return "[" + "=" * int(current / total * 20) + ">" + " " * (20 - int(current / total * 20)) + "] " + str(int(current / total * 100)) + "%"
|
| 98 |
|
| 99 |
def download_from_url(url, filename=None):
|
| 100 |
if "/blob/" in url:
|
| 101 |
+
url = url.replace("/blob/", "/resolve/") # made it delik proof 😎
|
| 102 |
if "huggingface" not in url:
|
| 103 |
return ["The URL must be from huggingface", "Failed", "Failed"]
|
| 104 |
if filename is None:
|
| 105 |
filename = os.path.join(TEMP_DIR, MODEL_PREFIX + str(random.randint(1, 1000)) + ".zip")
|
| 106 |
response = requests.get(url)
|
| 107 |
+
total = int(response.headers.get('content-length', 0)) # bytes to download (length of the file)
|
| 108 |
if total > 500000000:
|
| 109 |
|
| 110 |
return ["The file is too large. You can only download files up to 500 MB in size.", "Failed", "Failed"]
|
| 111 |
current = 0
|
| 112 |
with open(filename, "wb") as f:
|
| 113 |
+
for data in response.iter_content(chunk_size=4096):
|
| 114 |
f.write(data)
|
| 115 |
current += len(data)
|
| 116 |
print(progress_bar(total, current), end="\r")
|
| 117 |
|
| 118 |
|
| 119 |
+
|
| 120 |
try:
|
| 121 |
unzip_file(filename)
|
| 122 |
except Exception as e:
|
| 123 |
+
return ["Failed to unzip the file", "Failed", "Failed"]
|
| 124 |
+
unzipped_dir = os.path.join(TEMP_DIR, os.path.basename(filename).split(".")[0])
|
| 125 |
pth_files = []
|
| 126 |
index_files = []
|
| 127 |
+
for root, dirs, files in os.walk(unzipped_dir):
|
| 128 |
for file in files:
|
| 129 |
if file.endswith(".pth"):
|
| 130 |
pth_files.append(os.path.join(root, file))
|
|
|
|
| 184 |
else:
|
| 185 |
return f"{int(hours)} hours and {int(minutes)} minutes"
|
| 186 |
|
| 187 |
+
def inf_handler(audio, model_name):
|
| 188 |
model_found = False
|
| 189 |
for model_info in UVR_5_MODELS:
|
| 190 |
if model_info["model_name"] == model_name:
|