Spaces:
Runtime error
Runtime error
Update requirements.txt
Browse files- requirements.txt +5 -82
requirements.txt
CHANGED
@@ -1,82 +1,5 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
from huggingface_hub import hf_hub_download
|
7 |
-
|
8 |
-
# Ensure the Hugging Face token is retrieved from environment variables
|
9 |
-
huggingface_token = os.getenv("HF_TOKEN")
|
10 |
-
if huggingface_token is None:
|
11 |
-
raise ValueError("HUGGINGFACE_TOKEN environment variable not set.")
|
12 |
-
|
13 |
-
# Download the model file from Hugging Face using the token
|
14 |
-
model_id = "Arrcttacsrks/netrunner-exe_Insight-Swap-models-onnx"
|
15 |
-
model_file = hf_hub_download(repo_id=model_id, filename="simswap_512_unoff.onnx", token=huggingface_token)
|
16 |
-
|
17 |
-
def load_and_preprocess_image(image):
|
18 |
-
if image is None or not isinstance(image, np.ndarray):
|
19 |
-
raise ValueError("Input image is not valid.")
|
20 |
-
|
21 |
-
img = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
22 |
-
img = cv2.resize(img, (512, 512))
|
23 |
-
img = img / 255.0 # Normalize to [0, 1]
|
24 |
-
return img.astype(np.float32)
|
25 |
-
|
26 |
-
def swap_faces(source_image, target_image):
|
27 |
-
try:
|
28 |
-
# Load the ONNX model
|
29 |
-
session = ort.InferenceSession(model_file)
|
30 |
-
|
31 |
-
# Get input names
|
32 |
-
input_names = [input.name for input in session.get_inputs()]
|
33 |
-
|
34 |
-
# Print input shapes for debugging
|
35 |
-
for input in session.get_inputs():
|
36 |
-
print(f"Input '{input.name}' expects shape: {input.shape}")
|
37 |
-
|
38 |
-
# Preprocess the images
|
39 |
-
source_img = load_and_preprocess_image(source_image)
|
40 |
-
target_img = load_and_preprocess_image(target_image)
|
41 |
-
|
42 |
-
# Reshape inputs according to model requirements
|
43 |
-
# For the first input (assuming it's the image input)
|
44 |
-
source_input = source_img.transpose(2, 0, 1)[np.newaxis, ...] # Shape: (1, 3, 512, 512)
|
45 |
-
|
46 |
-
# For the second input (onnx::Gemm_1), reshape to rank 2 as required by the error message
|
47 |
-
target_features = target_img.transpose(2, 0, 1).reshape(-1, 512) # Reshape to 2D array
|
48 |
-
|
49 |
-
# Create input dictionary
|
50 |
-
input_dict = {
|
51 |
-
input_names[0]: source_input.astype(np.float32),
|
52 |
-
input_names[1]: target_features.astype(np.float32)
|
53 |
-
}
|
54 |
-
|
55 |
-
# Run inference
|
56 |
-
result = session.run(None, input_dict)[0]
|
57 |
-
|
58 |
-
# Post-process the result
|
59 |
-
result = result[0].transpose(1, 2, 0) # Convert from NCHW to HWC format
|
60 |
-
result = cv2.cvtColor(result, cv2.COLOR_BGR2RGB) # Convert back to RGB
|
61 |
-
return np.clip(result * 255, 0, 255).astype(np.uint8)
|
62 |
-
|
63 |
-
except Exception as e:
|
64 |
-
print(f"Error during face swapping: {str(e)}")
|
65 |
-
raise
|
66 |
-
|
67 |
-
# Create Gradio interface
|
68 |
-
interface = gr.Interface(
|
69 |
-
fn=swap_faces,
|
70 |
-
inputs=[
|
71 |
-
gr.Image(label="Source Face", type="numpy"),
|
72 |
-
gr.Image(label="Target Image", type="numpy")
|
73 |
-
],
|
74 |
-
outputs=gr.Image(label="Result"),
|
75 |
-
title="Face Swap using SimSwap",
|
76 |
-
description="Upload a source face and a target image to swap faces. The source face will be transferred onto the target image.",
|
77 |
-
allow_flagging="never"
|
78 |
-
)
|
79 |
-
|
80 |
-
# Launch the interface
|
81 |
-
if __name__ == "__main__":
|
82 |
-
interface.launch()
|
|
|
1 |
+
onnxruntime
|
2 |
+
gradio
|
3 |
+
opencv-python
|
4 |
+
huggingface-hub
|
5 |
+
numpy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|