Deffusion.X / app.py
ArrcttacsrjksX's picture
Create app.py
3964dd9 verified
raw
history blame
3.62 kB
import os
import requests
import subprocess
import gradio as gr
# Token Hugging Face từ biến môi trường
hf_token = os.getenv("HF_TOKEN")
# URLs cần tải
app_url = "https://huggingface.co/datasets/ArrcttacsrjksX/Deffusion/resolve/main/RunModelAppp/App/sdRundeffusiononhuggingfacemaster-ac54e00"
model_url = "https://huggingface.co/datasets/ArrcttacsrjksX/Deffusion/resolve/main/Model/realisticVisionV60B1_v51HyperVAE.safetensors"
# Đường dẫn lưu file
app_path = "sdRundeffusiononhuggingfacemaster-ac54e00"
model_path = "realisticVisionV60B1_v51HyperVAE.safetensors"
# Hàm tải file từ Hugging Face
def download_file(url, output_path, token):
headers = {"Authorization": f"Bearer {token}"}
response = requests.get(url, headers=headers, stream=True)
response.raise_for_status() # Kiểm tra lỗi
with open(output_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print(f"Downloaded: {output_path}")
# Tải các file nếu chưa tồn tại
if not os.path.exists(app_path):
download_file(app_url, app_path, hf_token)
subprocess.run(["chmod", "+x", app_path]) # Thay đổi quyền thực thi
if not os.path.exists(model_path):
download_file(model_url, model_path, hf_token)
# Hàm xử lý chạy ứng dụng
def run_command(prompt, mode, height, width, steps, seed, init_image=None):
try:
# Lưu ảnh đầu vào nếu được cung cấp
init_image_path = None
if init_image:
init_image_path = "input_image.png"
init_image.save(init_image_path)
# Chạy lệnh
command = [
f"./{app_path}",
"-M", mode,
"-m", model_path,
"-p", prompt,
"-H", str(height),
"-W", str(width),
"--steps", str(steps),
"-s", str(seed),
]
# Thêm ảnh đầu vào nếu có
if mode == "img2img" and init_image_path:
command.extend(["-i", init_image_path])
result = subprocess.run(command, capture_output=True, text=True)
# Kiểm tra kết quả và trả về
if result.returncode == 0:
output_path = "./output.png" # Đường dẫn ảnh đầu ra mặc định
return output_path if os.path.exists(output_path) else "Output image not found."
else:
return f"Error: {result.stderr}"
except Exception as e:
return str(e)
# Giao diện Gradio
with gr.Blocks() as demo:
gr.Markdown("# Stable Diffusion Interface")
# Cấu hình tham số
with gr.Row():
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here", lines=2)
mode = gr.Radio(choices=["txt2img", "img2img"], value="txt2img", label="Mode")
with gr.Row():
height = gr.Slider(128, 1024, value=512, step=64, label="Height (px)")
width = gr.Slider(128, 1024, value=512, step=64, label="Width (px)")
with gr.Row():
steps = gr.Slider(1, 100, value=20, step=1, label="Steps")
seed = gr.Slider(-1, 10000, value=42, step=1, label="Seed (-1 for random)")
init_image = gr.Image(label="Initial Image (for img2img mode, optional)", type="pil", optional=True)
output_path = gr.Textbox(label="Output Image Path or Logs", interactive=False)
run_button = gr.Button("Run")
# Kết nối hàm xử lý
run_button.click(
run_command,
inputs=[prompt, mode, height, width, steps, seed, init_image],
outputs=output_path,
)
demo.launch()