Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load pre-trained model and tokenizer | |
model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) # Use AutoTokenizer to automatically detect the correct tokenizer | |
model = AutoModelForCausalLM.from_pretrained(model_name) # Use AutoModelForCausalLM for causal language models | |
def generate_response(message, history): | |
# Combine the conversation history with the new message | |
input_text = f"{message}" | |
# Tokenize input text | |
inputs = tokenizer.encode(input_text, return_tensors="pt") | |
# Generate response using the model | |
outputs = model.generate(inputs, max_length=50, num_return_sequences=1) | |
# Decode generated text | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
# Create ChatInterface | |
demo = gr.ChatInterface( | |
fn=generate_response, | |
title="Chat with DeepSeek", | |
description="A simple chatbot powered by DeepSeek." | |
) | |
# Launch the app | |
demo.launch() |