Spaces:
Runtime error
Runtime error
Commit
·
caa56d6
0
Parent(s):
moved from training repo to inference
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +35 -0
- .github/workflows/main.yml +28 -0
- .gitignore +12 -0
- app.py +132 -0
- inference.py +117 -0
- requirements.txt +33 -0
- training/config/__init__.py +7 -0
- training/config/config/__init__.py +7 -0
- training/config/config/backbone/cls_hrnet_w48.yaml +103 -0
- training/config/config/detector/efficientnetb4.yaml +88 -0
- training/config/config/detector/resnet34.yaml +87 -0
- training/config/config/detector/ucf.yaml +130 -0
- training/config/config/detector/xception.yaml +86 -0
- training/config/config/test_config.yaml +38 -0
- training/config/config/train_config.yaml +43 -0
- training/config/detector/efficientnetb4.yaml +88 -0
- training/config/detector/ucf.yaml +131 -0
- training/config/detector/xception.yaml +86 -0
- training/config/test_config.yaml +38 -0
- training/config/train_config.yaml +43 -0
- training/dataset/I2G_dataset.py +389 -0
- training/dataset/__init__.py +19 -0
- training/dataset/abstract_dataset.py +621 -0
- training/dataset/albu.py +99 -0
- training/dataset/face_utils.py +238 -0
- training/dataset/ff_blend.py +572 -0
- training/dataset/fwa_blend.py +548 -0
- training/dataset/generate_parsing_mask.py +129 -0
- training/dataset/generate_xray_nearest.py +136 -0
- training/dataset/iid_dataset.py +116 -0
- training/dataset/library/000_0000.png +0 -0
- training/dataset/library/001_0000.png +0 -0
- training/dataset/library/DeepFakeMask.py +181 -0
- training/dataset/library/LICENSE +674 -0
- training/dataset/library/README.md +12 -0
- training/dataset/library/all_in_one.jpg +0 -0
- training/dataset/library/bi_online_generation.py +241 -0
- training/dataset/library/precomuted_landmarks.json +1 -0
- training/dataset/lrl_dataset.py +139 -0
- training/dataset/lsda_dataset.py +382 -0
- training/dataset/pair_dataset.py +150 -0
- training/dataset/sbi_api.py +371 -0
- training/dataset/sbi_dataset.py +139 -0
- training/dataset/tall_dataset.py +183 -0
- training/dataset/utils/DeepFakeMask.py +402 -0
- training/dataset/utils/SLADD.py +163 -0
- training/dataset/utils/attribution_mask.py +55 -0
- training/dataset/utils/bi_online_generation.py +289 -0
- training/dataset/utils/bi_online_generation_yzy.py +268 -0
- training/dataset/utils/color_transfer.py +516 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.github/workflows/main.yml
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: CI
|
2 |
+
|
3 |
+
# Controls when the workflow will run
|
4 |
+
on:
|
5 |
+
# Triggers the workflow on push events but only for the "main" branch
|
6 |
+
push:
|
7 |
+
branches: [ "main" ]
|
8 |
+
|
9 |
+
# Allows you to run this workflow manually from the Actions tab
|
10 |
+
workflow_dispatch:
|
11 |
+
|
12 |
+
jobs:
|
13 |
+
sync-to-hub:
|
14 |
+
runs-on: ubuntu-latest
|
15 |
+
steps:
|
16 |
+
- uses: actions/checkout@v4
|
17 |
+
with:
|
18 |
+
fetch-depth: 0
|
19 |
+
|
20 |
+
- name: Add remote
|
21 |
+
env:
|
22 |
+
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
23 |
+
run: git remote add space https://ArissBandoss:[email protected]/spaces/ArissBandoss/DeepFake-Videos-Detection
|
24 |
+
|
25 |
+
- name: Push to hub
|
26 |
+
env:
|
27 |
+
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
28 |
+
run: git push --force https://ArissBandoss:[email protected]/spaces/ArissBandoss/DeepFake-Videos-Detection main
|
.gitignore
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.idea
|
2 |
+
*__pycache__*
|
3 |
+
*.vscode*
|
4 |
+
*.pyc
|
5 |
+
*.pth
|
6 |
+
*.pt
|
7 |
+
*.dat
|
8 |
+
audios-testing
|
9 |
+
temp_video_frames
|
10 |
+
.gradio
|
11 |
+
*.zip
|
12 |
+
*.npy
|
app.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from torchvision import transforms
|
6 |
+
from PIL import Image
|
7 |
+
from tqdm import tqdm
|
8 |
+
from training.detectors import DETECTOR
|
9 |
+
import yaml
|
10 |
+
import gradio as gr
|
11 |
+
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
|
14 |
+
# available models in the repository
|
15 |
+
AVAILABLE_MODELS = [
|
16 |
+
"xception",
|
17 |
+
"ucf",
|
18 |
+
]
|
19 |
+
|
20 |
+
# load the model
|
21 |
+
def load_model(model_name, config_path, weights_path):
|
22 |
+
with open(config_path, 'r') as f:
|
23 |
+
config = yaml.safe_load(f)
|
24 |
+
|
25 |
+
config['model_name'] = model_name
|
26 |
+
|
27 |
+
model_class = DETECTOR[model_name]
|
28 |
+
model = model_class(config).to(device)
|
29 |
+
|
30 |
+
checkpoint = torch.load(weights_path, map_location=device)
|
31 |
+
model.load_state_dict(checkpoint, strict=True)
|
32 |
+
model.eval()
|
33 |
+
return model
|
34 |
+
|
35 |
+
# preprocess a single video
|
36 |
+
def preprocess_video(video_path, output_dir, frame_num=32):
|
37 |
+
os.makedirs(output_dir, exist_ok=True)
|
38 |
+
frames_dir = os.path.join(output_dir, "frames")
|
39 |
+
os.makedirs(frames_dir, exist_ok=True)
|
40 |
+
|
41 |
+
cap = cv2.VideoCapture(video_path)
|
42 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
43 |
+
frame_indices = np.linspace(0, total_frames - 1, frame_num, dtype=int)
|
44 |
+
|
45 |
+
# extract frames
|
46 |
+
frames = []
|
47 |
+
for idx in frame_indices:
|
48 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
|
49 |
+
ret, frame = cap.read()
|
50 |
+
if ret:
|
51 |
+
frame_path = os.path.join(frames_dir, f"frame_{idx:04d}.png")
|
52 |
+
cv2.imwrite(frame_path, frame)
|
53 |
+
frames.append(frame_path)
|
54 |
+
|
55 |
+
cap.release()
|
56 |
+
return frames
|
57 |
+
|
58 |
+
# inference on a single video
|
59 |
+
def infer_video(video_path, model, device):
|
60 |
+
# Preprocess the video
|
61 |
+
output_dir = "temp_video_frames"
|
62 |
+
frames = preprocess_video(video_path, output_dir)
|
63 |
+
|
64 |
+
transform = transforms.Compose([
|
65 |
+
transforms.Resize((256, 256)),
|
66 |
+
transforms.ToTensor(),
|
67 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
68 |
+
])
|
69 |
+
|
70 |
+
probs = []
|
71 |
+
for frame_path in frames:
|
72 |
+
frame = Image.open(frame_path).convert("RGB")
|
73 |
+
frame = transform(frame).unsqueeze(0).to(device)
|
74 |
+
|
75 |
+
data_dict = {
|
76 |
+
"image": frame,
|
77 |
+
"label": torch.tensor([0]).to(device), # Dummy label
|
78 |
+
"label_spe": torch.tensor([0]).to(device), # Dummy specific label
|
79 |
+
}
|
80 |
+
|
81 |
+
with torch.no_grad():
|
82 |
+
pred_dict = model(data_dict, inference=True)
|
83 |
+
|
84 |
+
logits = pred_dict["cls"] # Shape: [batch_size, num_classes]
|
85 |
+
prob = torch.softmax(logits, dim=1)[:, 1].item() # Probability of being "fake"
|
86 |
+
probs.append(prob)
|
87 |
+
|
88 |
+
# aggregate predictions (e.g., average probability)
|
89 |
+
avg_prob = np.mean(probs)
|
90 |
+
prediction = "Fake" if avg_prob > 0.5 else "Real"
|
91 |
+
return prediction, avg_prob
|
92 |
+
|
93 |
+
# gradio inference function
|
94 |
+
def gradio_inference(video, model_name):
|
95 |
+
config_path = f"/teamspace/studios/this_studio/DeepfakeBench/training/config/detector/{model_name}.yaml"
|
96 |
+
weights_path = f"/teamspace/studios/this_studio/DeepfakeBench/training/weights/{model_name}_best.pth"
|
97 |
+
|
98 |
+
if not os.path.exists(config_path):
|
99 |
+
return f"Error: Config file for model '{model_name}' not found at {config_path}."
|
100 |
+
if not os.path.exists(weights_path):
|
101 |
+
return f"Error: Weights file for model '{model_name}' not found at {weights_path}."
|
102 |
+
|
103 |
+
model = load_model(model_name, config_path, weights_path)
|
104 |
+
|
105 |
+
prediction, confidence = infer_video(video, model, device)
|
106 |
+
return f"Model: {model_name}\nPrediction: {prediction} (Confidence: {confidence:.4f})"
|
107 |
+
|
108 |
+
# Gradio App
|
109 |
+
def create_gradio_app():
|
110 |
+
with gr.Blocks() as demo:
|
111 |
+
gr.Markdown("# Deepfake Detection Demo")
|
112 |
+
gr.Markdown("Upload a video and select a model to detect if it's real or fake.")
|
113 |
+
|
114 |
+
with gr.Row():
|
115 |
+
video_input = gr.Video(label="Upload Video")
|
116 |
+
model_dropdown = gr.Dropdown(choices=AVAILABLE_MODELS, label="Select Model", value="xception")
|
117 |
+
|
118 |
+
output_text = gr.Textbox(label="Prediction Result")
|
119 |
+
|
120 |
+
submit_button = gr.Button("Run Inference")
|
121 |
+
submit_button.click(
|
122 |
+
fn=gradio_inference,
|
123 |
+
inputs=[video_input, model_dropdown],
|
124 |
+
outputs=output_text,
|
125 |
+
)
|
126 |
+
|
127 |
+
return demo
|
128 |
+
|
129 |
+
|
130 |
+
if __name__ == "__main__":
|
131 |
+
demo = create_gradio_app()
|
132 |
+
demo.launch(share=True)
|
inference.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from torchvision import transforms
|
6 |
+
from PIL import Image
|
7 |
+
from tqdm import tqdm
|
8 |
+
from training.detectors import DETECTOR
|
9 |
+
import yaml
|
10 |
+
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
|
13 |
+
# load the model
|
14 |
+
def load_model(model_name, config_path, weights_path):
|
15 |
+
with open(config_path, 'r') as f:
|
16 |
+
config = yaml.safe_load(f)
|
17 |
+
|
18 |
+
config['model_name'] = model_name
|
19 |
+
|
20 |
+
model_class = DETECTOR[model_name]
|
21 |
+
model = model_class(config).to(device)
|
22 |
+
|
23 |
+
checkpoint = torch.load(weights_path, map_location=device)
|
24 |
+
model.load_state_dict(checkpoint, strict=True)
|
25 |
+
model.eval()
|
26 |
+
return model
|
27 |
+
|
28 |
+
# preprocess a single video
|
29 |
+
def preprocess_video(video_path, output_dir, frame_num=32):
|
30 |
+
os.makedirs(output_dir, exist_ok=True)
|
31 |
+
frames_dir = os.path.join(output_dir, "frames")
|
32 |
+
os.makedirs(frames_dir, exist_ok=True)
|
33 |
+
|
34 |
+
cap = cv2.VideoCapture(video_path)
|
35 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
36 |
+
frame_indices = np.linspace(0, total_frames - 1, frame_num, dtype=int)
|
37 |
+
|
38 |
+
# extract frames
|
39 |
+
frames = []
|
40 |
+
for idx in frame_indices:
|
41 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
|
42 |
+
ret, frame = cap.read()
|
43 |
+
if ret:
|
44 |
+
frame_path = os.path.join(frames_dir, f"frame_{idx:04d}.png")
|
45 |
+
cv2.imwrite(frame_path, frame)
|
46 |
+
frames.append(frame_path)
|
47 |
+
|
48 |
+
cap.release()
|
49 |
+
return frames
|
50 |
+
|
51 |
+
# inference on a single video
|
52 |
+
def infer_video(video_path, model, device):
|
53 |
+
output_dir = "temp_video_frames"
|
54 |
+
frames = preprocess_video(video_path, output_dir)
|
55 |
+
|
56 |
+
transform = transforms.Compose([
|
57 |
+
transforms.Resize((256, 256)),
|
58 |
+
transforms.ToTensor(),
|
59 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
60 |
+
])
|
61 |
+
|
62 |
+
probs = []
|
63 |
+
for frame_path in frames:
|
64 |
+
frame = Image.open(frame_path).convert("RGB")
|
65 |
+
frame = transform(frame).unsqueeze(0).to(device)
|
66 |
+
|
67 |
+
data_dict = {
|
68 |
+
"image": frame,
|
69 |
+
"label": torch.tensor([0]).to(device), # Dummy label
|
70 |
+
"label_spe": torch.tensor([0]).to(device), # Dummy specific label
|
71 |
+
}
|
72 |
+
|
73 |
+
with torch.no_grad():
|
74 |
+
pred_dict = model(data_dict, inference=True)
|
75 |
+
|
76 |
+
logits = pred_dict["cls"] # Shape: [batch_size, num_classes]
|
77 |
+
prob = torch.softmax(logits, dim=1)[:, 1].item() # Probability of being "fake"
|
78 |
+
probs.append(prob)
|
79 |
+
|
80 |
+
avg_prob = np.mean(probs)
|
81 |
+
prediction = "Fake" if avg_prob > 0.5 else "Real"
|
82 |
+
return prediction, avg_prob
|
83 |
+
|
84 |
+
# main function for terminal-based inference
|
85 |
+
def main(video_filename, model_name):
|
86 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
87 |
+
config_path = f"/teamspace/studios/this_studio/DeepfakeBench/training/config/detector/{model_name}.yaml"
|
88 |
+
weights_path = f"/teamspace/studios/this_studio/DeepfakeBench/training/weights/{model_name}_best.pth"
|
89 |
+
|
90 |
+
if not os.path.exists(config_path):
|
91 |
+
print(f"Error: Config file for model '{model_name}' not found at {config_path}.")
|
92 |
+
return
|
93 |
+
if not os.path.exists(weights_path):
|
94 |
+
print(f"Error: Weights file for model '{model_name}' not found at {weights_path}.")
|
95 |
+
return
|
96 |
+
|
97 |
+
model = load_model(model_name, config_path, weights_path)
|
98 |
+
|
99 |
+
video_path = os.path.join(os.getcwd(), video_filename)
|
100 |
+
if not os.path.exists(video_path):
|
101 |
+
print(f"Error: Video file '{video_filename}' not found in the current directory.")
|
102 |
+
return
|
103 |
+
|
104 |
+
prediction, confidence = infer_video(video_path, model, device)
|
105 |
+
print(f"Model: {model_name}")
|
106 |
+
print(f"Prediction: {prediction} (Confidence: {confidence:.4f})")
|
107 |
+
|
108 |
+
|
109 |
+
if __name__ == "__main__":
|
110 |
+
import sys
|
111 |
+
if len(sys.argv) != 3:
|
112 |
+
print("Usage: python inference_script.py <video_filename> <model_name>")
|
113 |
+
print("Available models: xception, meso4, meso4Inception, efficientnetb4, ucf, etc.")
|
114 |
+
else:
|
115 |
+
video_filename = sys.argv[1]
|
116 |
+
model_name = sys.argv[2]
|
117 |
+
main(video_filename, model_name)
|
requirements.txt
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy==1.21.5
|
2 |
+
pandas==1.4.2
|
3 |
+
Pillow==9.0.1
|
4 |
+
dlib==19.24.0
|
5 |
+
imageio==2.9.0
|
6 |
+
imgaug==0.4.0
|
7 |
+
tqdm==4.61.0
|
8 |
+
scipy==1.7.3
|
9 |
+
seaborn==0.11.2
|
10 |
+
pyyaml==6.0
|
11 |
+
imutils==0.5.4
|
12 |
+
opencv-python==4.6.0.66
|
13 |
+
scikit-image==0.19.2
|
14 |
+
scikit-learn==1.0.2
|
15 |
+
albumentations==1.1.0
|
16 |
+
torch==1.12.0
|
17 |
+
torchvision==0.13.0
|
18 |
+
torchaudio==0.12.0
|
19 |
+
efficientnet-pytorch==0.7.1
|
20 |
+
timm==0.6.12
|
21 |
+
segmentation-models-pytorch==0.3.2
|
22 |
+
torchtoolbox==0.1.8.2
|
23 |
+
tensorboard==2.10.1
|
24 |
+
setuptools==59.5.0
|
25 |
+
loralib
|
26 |
+
einops
|
27 |
+
transformers
|
28 |
+
filterpy
|
29 |
+
simplejson
|
30 |
+
kornia
|
31 |
+
fvcore
|
32 |
+
imgaug==0.4.0
|
33 |
+
git+https://github.com/openai/CLIP.git
|
training/config/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
current_file_path = os.path.abspath(__file__)
|
4 |
+
parent_dir = os.path.dirname(os.path.dirname(current_file_path))
|
5 |
+
project_root_dir = os.path.dirname(parent_dir)
|
6 |
+
sys.path.append(parent_dir)
|
7 |
+
sys.path.append(project_root_dir)
|
training/config/config/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
current_file_path = os.path.abspath(__file__)
|
4 |
+
parent_dir = os.path.dirname(os.path.dirname(current_file_path))
|
5 |
+
project_root_dir = os.path.dirname(parent_dir)
|
6 |
+
sys.path.append(parent_dir)
|
7 |
+
sys.path.append(project_root_dir)
|
training/config/config/backbone/cls_hrnet_w48.yaml
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CUDNN:
|
2 |
+
BENCHMARK: true
|
3 |
+
DETERMINISTIC: false
|
4 |
+
ENABLED: true
|
5 |
+
GPUS: (0,1,2,3)
|
6 |
+
OUTPUT_DIR: 'output'
|
7 |
+
LOG_DIR: 'log'
|
8 |
+
WORKERS: 4
|
9 |
+
PRINT_FREQ: 100
|
10 |
+
|
11 |
+
DATASET:
|
12 |
+
DATASET: lip
|
13 |
+
ROOT: 'data/'
|
14 |
+
TEST_SET: 'list/lip/valList.txt'
|
15 |
+
TRAIN_SET: 'list/lip/trainList.txt'
|
16 |
+
NUM_CLASSES: 20
|
17 |
+
MODEL:
|
18 |
+
NAME: cls_hrnet
|
19 |
+
#IMAGE_SIZE:
|
20 |
+
# - 224
|
21 |
+
# - 224
|
22 |
+
EXTRA:
|
23 |
+
STAGE1:
|
24 |
+
NUM_MODULES: 1
|
25 |
+
NUM_RANCHES: 1
|
26 |
+
BLOCK: BOTTLENECK
|
27 |
+
NUM_BLOCKS:
|
28 |
+
- 4
|
29 |
+
NUM_CHANNELS:
|
30 |
+
- 64
|
31 |
+
FUSE_METHOD: SUM
|
32 |
+
STAGE2:
|
33 |
+
NUM_MODULES: 1
|
34 |
+
NUM_BRANCHES: 2
|
35 |
+
BLOCK: BASIC
|
36 |
+
NUM_BLOCKS:
|
37 |
+
- 4
|
38 |
+
- 4
|
39 |
+
NUM_CHANNELS:
|
40 |
+
- 48
|
41 |
+
- 96
|
42 |
+
FUSE_METHOD: SUM
|
43 |
+
STAGE3:
|
44 |
+
NUM_MODULES: 4
|
45 |
+
NUM_BRANCHES: 3
|
46 |
+
BLOCK: BASIC
|
47 |
+
NUM_BLOCKS:
|
48 |
+
- 4
|
49 |
+
- 4
|
50 |
+
- 4
|
51 |
+
NUM_CHANNELS:
|
52 |
+
- 48
|
53 |
+
- 96
|
54 |
+
- 192
|
55 |
+
FUSE_METHOD: SUM
|
56 |
+
STAGE4:
|
57 |
+
NUM_MODULES: 3
|
58 |
+
NUM_BRANCHES: 4
|
59 |
+
BLOCK: BASIC
|
60 |
+
NUM_BLOCKS:
|
61 |
+
- 4
|
62 |
+
- 4
|
63 |
+
- 4
|
64 |
+
- 4
|
65 |
+
NUM_CHANNELS:
|
66 |
+
- 48
|
67 |
+
- 96
|
68 |
+
- 192
|
69 |
+
- 384
|
70 |
+
FUSE_METHOD: SUM
|
71 |
+
LOSS:
|
72 |
+
USE_OHEM: false
|
73 |
+
OHEMTHRES: 0.9
|
74 |
+
OHEMKEEP: 131072
|
75 |
+
TRAIN:
|
76 |
+
IMAGE_SIZE:
|
77 |
+
- 473
|
78 |
+
- 473
|
79 |
+
BASE_SIZE: 473
|
80 |
+
BATCH_SIZE_PER_GPU: 10
|
81 |
+
SHUFFLE: true
|
82 |
+
BEGIN_EPOCH: 0
|
83 |
+
END_EPOCH: 150
|
84 |
+
RESUME: true
|
85 |
+
OPTIMIZER: sgd
|
86 |
+
LR: 0.007
|
87 |
+
WD: 0.0005
|
88 |
+
MOMENTUM: 0.9
|
89 |
+
NESTEROV: false
|
90 |
+
FLIP: true
|
91 |
+
MULTI_SCALE: true
|
92 |
+
DOWNSAMPLERATE: 1
|
93 |
+
IGNORE_LABEL: 255
|
94 |
+
SCALE_FACTOR: 11
|
95 |
+
TEST:
|
96 |
+
IMAGE_SIZE:
|
97 |
+
- 473
|
98 |
+
- 473
|
99 |
+
BASE_SIZE: 473
|
100 |
+
BATCH_SIZE_PER_GPU: 16
|
101 |
+
NUM_SAMPLES: 2000
|
102 |
+
FLIP_TEST: false
|
103 |
+
MULTI_SCALE: false
|
training/config/config/detector/efficientnetb4.yaml
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# log dir
|
2 |
+
log_dir: logs/evaluations/effnb4
|
3 |
+
|
4 |
+
# model setting
|
5 |
+
# pretrained: /home/zhiyuanyan/disfin/deepfake_benchmark/training/pretrained/xception-b5690688.pth # path to a pre-trained model, if using one
|
6 |
+
pretrained: ./training/pretrained/efficientnet-b4-6ed6700e.pth # path to a pre-trained model, if using one
|
7 |
+
model_name: efficientnetb4 # model name
|
8 |
+
backbone_name: efficientnetb4 # backbone name
|
9 |
+
|
10 |
+
#backbone setting
|
11 |
+
backbone_config:
|
12 |
+
num_classes: 2
|
13 |
+
inc: 3
|
14 |
+
dropout: false
|
15 |
+
mode: Original
|
16 |
+
|
17 |
+
# dataset
|
18 |
+
all_dataset: [FaceForensics++, FF-F2F, FF-DF, FF-FS, FF-NT, FaceShifter, DeepFakeDetection, Celeb-DF-v1, Celeb-DF-v2, DFDCP, DFDC, DeeperForensics-1.0, UADFV]
|
19 |
+
train_dataset: [FF-NT]
|
20 |
+
test_dataset: [FaceForensics++, FF-F2F, FF-DF, FF-FS, FF-NT]
|
21 |
+
|
22 |
+
compression: c23 # compression-level for videos
|
23 |
+
train_batchSize: 32 # training batch size
|
24 |
+
test_batchSize: 32 # test batch size
|
25 |
+
workers: 8 # number of data loading workers
|
26 |
+
frame_num: {'train': 32, 'test': 32} # number of frames to use per video in training and testing
|
27 |
+
resolution: 256 # resolution of output image to network
|
28 |
+
with_mask: false # whether to include mask information in the input
|
29 |
+
with_landmark: false # whether to include facial landmark information in the input
|
30 |
+
save_ckpt: true # whether to save checkpoint
|
31 |
+
save_feat: true # whether to save features
|
32 |
+
|
33 |
+
|
34 |
+
# data augmentation
|
35 |
+
use_data_augmentation: true # Add this flag to enable/disable data augmentation
|
36 |
+
data_aug:
|
37 |
+
flip_prob: 0.5
|
38 |
+
rotate_prob: 0.5
|
39 |
+
rotate_limit: [-10, 10]
|
40 |
+
blur_prob: 0.5
|
41 |
+
blur_limit: [3, 7]
|
42 |
+
brightness_prob: 0.5
|
43 |
+
brightness_limit: [-0.1, 0.1]
|
44 |
+
contrast_limit: [-0.1, 0.1]
|
45 |
+
quality_lower: 40
|
46 |
+
quality_upper: 100
|
47 |
+
|
48 |
+
# mean and std for normalization
|
49 |
+
mean: [0.5, 0.5, 0.5]
|
50 |
+
std: [0.5, 0.5, 0.5]
|
51 |
+
|
52 |
+
# optimizer config
|
53 |
+
optimizer:
|
54 |
+
# choose between 'adam' and 'sgd'
|
55 |
+
type: adam
|
56 |
+
adam:
|
57 |
+
lr: 0.0002 # learning rate
|
58 |
+
beta1: 0.9 # beta1 for Adam optimizer
|
59 |
+
beta2: 0.999 # beta2 for Adam optimizer
|
60 |
+
eps: 0.00000001 # epsilon for Adam optimizer
|
61 |
+
weight_decay: 0.0005 # weight decay for regularization
|
62 |
+
amsgrad: false
|
63 |
+
sgd:
|
64 |
+
lr: 0.0002 # learning rate
|
65 |
+
momentum: 0.9 # momentum for SGD optimizer
|
66 |
+
weight_decay: 0.0005 # weight decay for regularization
|
67 |
+
|
68 |
+
# training config
|
69 |
+
lr_scheduler: null # learning rate scheduler
|
70 |
+
nEpochs: 10 # number of epochs to train for
|
71 |
+
start_epoch: 0 # manual epoch number (useful for restarts)
|
72 |
+
save_epoch: 1 # interval epochs for saving models
|
73 |
+
rec_iter: 100 # interval iterations for recording
|
74 |
+
logdir: ./logs # folder to output images and logs
|
75 |
+
manualSeed: 1024 # manual seed for random number generation
|
76 |
+
save_ckpt: false # whether to save checkpoint
|
77 |
+
|
78 |
+
# loss function
|
79 |
+
loss_func: cross_entropy # loss function to use
|
80 |
+
losstype: null
|
81 |
+
|
82 |
+
# metric
|
83 |
+
metric_scoring: auc # metric for evaluation (auc, acc, eer, ap)
|
84 |
+
|
85 |
+
# cuda
|
86 |
+
|
87 |
+
cuda: true # whether to use CUDA acceleration
|
88 |
+
cudnn: true # whether to use CuDNN for convolution operations
|
training/config/config/detector/resnet34.yaml
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# log dir
|
2 |
+
log_dir: /mntcephfs/lab_data/zhiyuanyan/benchmark_results/logs_final/resnet18
|
3 |
+
|
4 |
+
# model setting
|
5 |
+
pretrained: /home/zhiyuanyan/disfin/deepfake_benchmark/training/pretrained/resnet34-b627a593.pth # path to a pre-trained model, if using one
|
6 |
+
model_name: resnet34 # model name
|
7 |
+
backbone_name: resnet34 # backbone name
|
8 |
+
|
9 |
+
#backbone setting
|
10 |
+
backbone_config:
|
11 |
+
num_classes: 2
|
12 |
+
inc: 3
|
13 |
+
dropout: false
|
14 |
+
mode: Original
|
15 |
+
|
16 |
+
# dataset
|
17 |
+
all_dataset: [FaceForensics++, FF-F2F, FF-DF, FF-FS, FF-NT, FaceShifter, DeepFakeDetection, Celeb-DF-v1, Celeb-DF-v2, DFDCP, DFDC, DeeperForensics-1.0, UADFV]
|
18 |
+
train_dataset: [FF-NT]
|
19 |
+
test_dataset: [FaceForensics++, FF-F2F, FF-DF, FF-FS, FF-NT]
|
20 |
+
|
21 |
+
compression: c23 # compression-level for videos
|
22 |
+
train_batchSize: 32 # training batch size
|
23 |
+
test_batchSize: 32 # test batch size
|
24 |
+
workers: 8 # number of data loading workers
|
25 |
+
frame_num: {'train': 32, 'test': 32} # number of frames to use per video in training and testing
|
26 |
+
resolution: 256 # resolution of output image to network
|
27 |
+
with_mask: false # whether to include mask information in the input
|
28 |
+
with_landmark: false # whether to include facial landmark information in the input
|
29 |
+
save_ckpt: true # whether to save checkpoint
|
30 |
+
save_feat: true # whether to save features
|
31 |
+
|
32 |
+
|
33 |
+
# data augmentation
|
34 |
+
use_data_augmentation: true # Add this flag to enable/disable data augmentation
|
35 |
+
data_aug:
|
36 |
+
flip_prob: 0.5
|
37 |
+
rotate_prob: 0.5
|
38 |
+
rotate_limit: [-10, 10]
|
39 |
+
blur_prob: 0.5
|
40 |
+
blur_limit: [3, 7]
|
41 |
+
brightness_prob: 0.5
|
42 |
+
brightness_limit: [-0.1, 0.1]
|
43 |
+
contrast_limit: [-0.1, 0.1]
|
44 |
+
quality_lower: 40
|
45 |
+
quality_upper: 100
|
46 |
+
|
47 |
+
# mean and std for normalization
|
48 |
+
mean: [0.5, 0.5, 0.5]
|
49 |
+
std: [0.5, 0.5, 0.5]
|
50 |
+
|
51 |
+
# optimizer config
|
52 |
+
optimizer:
|
53 |
+
# choose between 'adam' and 'sgd'
|
54 |
+
type: adam
|
55 |
+
adam:
|
56 |
+
lr: 0.0002 # learning rate
|
57 |
+
beta1: 0.9 # beta1 for Adam optimizer
|
58 |
+
beta2: 0.999 # beta2 for Adam optimizer
|
59 |
+
eps: 0.00000001 # epsilon for Adam optimizer
|
60 |
+
weight_decay: 0.0005 # weight decay for regularization
|
61 |
+
amsgrad: false
|
62 |
+
sgd:
|
63 |
+
lr: 0.0002 # learning rate
|
64 |
+
momentum: 0.9 # momentum for SGD optimizer
|
65 |
+
weight_decay: 0.0005 # weight decay for regularization
|
66 |
+
|
67 |
+
# training config
|
68 |
+
lr_scheduler: null # learning rate scheduler
|
69 |
+
nEpochs: 10 # number of epochs to train for
|
70 |
+
start_epoch: 0 # manual epoch number (useful for restarts)
|
71 |
+
save_epoch: 1 # interval epochs for saving models
|
72 |
+
rec_iter: 100 # interval iterations for recording
|
73 |
+
logdir: ./logs # folder to output images and logs
|
74 |
+
manualSeed: 1024 # manual seed for random number generation
|
75 |
+
save_ckpt: false # whether to save checkpoint
|
76 |
+
|
77 |
+
# loss function
|
78 |
+
loss_func: cross_entropy # loss function to use
|
79 |
+
losstype: null
|
80 |
+
|
81 |
+
# metric
|
82 |
+
metric_scoring: auc # metric for evaluation (auc, acc, eer, ap)
|
83 |
+
|
84 |
+
# cuda
|
85 |
+
|
86 |
+
cuda: true # whether to use CUDA acceleration
|
87 |
+
cudnn: true # whether to use CuDNN for convolution operations
|
training/config/config/detector/ucf.yaml
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# log dir
|
2 |
+
log_dir: /data/home/zhiyuanyan/DeepfakeBench/debug_logs/ucf
|
3 |
+
|
4 |
+
# model setting
|
5 |
+
pretrained: ./training/pretrained/xception-b5690688.pth # path to a pre-trained model, if using one
|
6 |
+
# pretrained: '/home/zhiyuanyan/.cache/torch/hub/checkpoints/resnet34-b627a593.pth' # path to a pre-trained model, if using one
|
7 |
+
model_name: ucf # model name
|
8 |
+
backbone_name: xception # backbone name
|
9 |
+
encoder_feat_dim: 512 # feature dimension of the backbone
|
10 |
+
|
11 |
+
#backbone setting
|
12 |
+
backbone_config:
|
13 |
+
mode: adjust_channel
|
14 |
+
num_classes: 2
|
15 |
+
inc: 3
|
16 |
+
dropout: false
|
17 |
+
|
18 |
+
# dataset
|
19 |
+
all_dataset: [FaceForensics++, FF-F2F, FF-DF, FF-FS, FF-NT, FaceShifter, DeepFakeDetection, Celeb-DF-v1, Celeb-DF-v2, DFDCP, DFDC, DeeperForensics-1.0, UADFV]
|
20 |
+
train_dataset: [FF-F2F, FF-DF, FF-FS, FF-NT,]
|
21 |
+
test_dataset: [Celeb-DF-v2]
|
22 |
+
dataset_type: pair
|
23 |
+
|
24 |
+
compression: c23 # compression-level for videos
|
25 |
+
train_batchSize: 16 # training batch size
|
26 |
+
test_batchSize: 32 # test batch size
|
27 |
+
workers: 8 # number of data loading workers
|
28 |
+
frame_num: {'train': 32, 'test': 32} # number of frames to use per video in training and testing
|
29 |
+
resolution: 256 # resolution of output image to network
|
30 |
+
with_mask: false # whether to include mask information in the input
|
31 |
+
with_landmark: false # whether to include facial landmark information in the input
|
32 |
+
save_feat: true # whether to save features
|
33 |
+
|
34 |
+
# label settings
|
35 |
+
label_dict:
|
36 |
+
# DFD
|
37 |
+
DFD_fake: 1
|
38 |
+
DFD_real: 0
|
39 |
+
FaceShifter: 1
|
40 |
+
FF-FH: 1
|
41 |
+
# FF++ + FaceShifter(FF-real+FF-FH)
|
42 |
+
# ucf specific label setting
|
43 |
+
FF-DF: 1
|
44 |
+
FF-F2F: 2
|
45 |
+
FF-FS: 3
|
46 |
+
FF-NT: 4
|
47 |
+
FF-real: 0
|
48 |
+
# CelebDF
|
49 |
+
CelebDFv1_real: 0
|
50 |
+
CelebDFv1_fake: 1
|
51 |
+
CelebDFv2_real: 0
|
52 |
+
CelebDFv2_fake: 1
|
53 |
+
# DFDCP
|
54 |
+
DFDCP_Real: 0
|
55 |
+
DFDCP_FakeA: 1
|
56 |
+
DFDCP_FakeB: 1
|
57 |
+
# DFDC
|
58 |
+
DFDC_Fake: 1
|
59 |
+
DFDC_Real: 0
|
60 |
+
# DeeperForensics-1.0
|
61 |
+
DF_fake: 1
|
62 |
+
DF_real: 0
|
63 |
+
# UADFV
|
64 |
+
UADFV_Fake: 1
|
65 |
+
UADFV_Real: 0
|
66 |
+
# roop
|
67 |
+
roop_Fake: 1
|
68 |
+
roop_Real: 0
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
# data augmentation
|
73 |
+
use_data_augmentation: true # Add this flag to enable/disable data augmentation
|
74 |
+
data_aug:
|
75 |
+
flip_prob: 0.5
|
76 |
+
rotate_prob: 0.5
|
77 |
+
rotate_limit: [-10, 10]
|
78 |
+
blur_prob: 0.5
|
79 |
+
blur_limit: [3, 7]
|
80 |
+
brightness_prob: 0.5
|
81 |
+
brightness_limit: [-0.1, 0.1]
|
82 |
+
contrast_limit: [-0.1, 0.1]
|
83 |
+
quality_lower: 40
|
84 |
+
quality_upper: 100
|
85 |
+
|
86 |
+
# mean and std for normalization
|
87 |
+
mean: [0.5, 0.5, 0.5]
|
88 |
+
std: [0.5, 0.5, 0.5]
|
89 |
+
|
90 |
+
# optimizer config
|
91 |
+
optimizer:
|
92 |
+
# choose between 'adam' and 'sgd'
|
93 |
+
type: adam
|
94 |
+
adam:
|
95 |
+
lr: 0.0002 # learning rate
|
96 |
+
beta1: 0.9 # beta1 for Adam optimizer
|
97 |
+
beta2: 0.999 # beta2 for Adam optimizer
|
98 |
+
eps: 0.00000001 # epsilon for Adam optimizer
|
99 |
+
weight_decay: 0.0005 # weight decay for regularization
|
100 |
+
amsgrad: false
|
101 |
+
sgd:
|
102 |
+
lr: 0.0002 # learning rate
|
103 |
+
momentum: 0.9 # momentum for SGD optimizer
|
104 |
+
weight_decay: 0.0005 # weight decay for regularization
|
105 |
+
|
106 |
+
# training config
|
107 |
+
lr_scheduler: null # learning rate scheduler
|
108 |
+
nEpochs: 5 # number of epochs to train for
|
109 |
+
start_epoch: 0 # manual epoch number (useful for restarts)
|
110 |
+
save_epoch: 1 # interval epochs for saving models
|
111 |
+
rec_iter: 100 # interval iterations for recording
|
112 |
+
logdir: ./logs # folder to output images and logs
|
113 |
+
manualSeed: 1024 # manual seed for random number generation
|
114 |
+
save_ckpt: false # whether to save checkpoint
|
115 |
+
|
116 |
+
# loss function
|
117 |
+
loss_func:
|
118 |
+
cls_loss: cross_entropy # loss function to use
|
119 |
+
spe_loss: cross_entropy
|
120 |
+
con_loss: contrastive_regularization
|
121 |
+
rec_loss: l1loss
|
122 |
+
losstype: null
|
123 |
+
|
124 |
+
# metric
|
125 |
+
metric_scoring: auc # metric for evaluation (auc, acc, eer, ap)
|
126 |
+
|
127 |
+
# cuda
|
128 |
+
|
129 |
+
cuda: true # whether to use CUDA acceleration
|
130 |
+
cudnn: true # whether to use CuDNN for convolution operations
|
training/config/config/detector/xception.yaml
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# log dir
|
2 |
+
log_dir: /data/home/zhiyuanyan/DeepfakeBench/logs/testing_bench
|
3 |
+
|
4 |
+
# model setting
|
5 |
+
pretrained: /teamspace/studios/this_studio/DeepfakeBench/training/pretrained/xception-b5690688.pth # path to a pre-trained model, if using one
|
6 |
+
model_name: xception # model name
|
7 |
+
backbone_name: xception # backbone name
|
8 |
+
|
9 |
+
#backbone setting
|
10 |
+
backbone_config:
|
11 |
+
mode: original
|
12 |
+
num_classes: 2
|
13 |
+
inc: 3
|
14 |
+
dropout: false
|
15 |
+
|
16 |
+
# dataset
|
17 |
+
all_dataset: [FaceForensics++, FF-F2F, FF-DF, FF-FS, FF-NT, FaceShifter, DeepFakeDetection, Celeb-DF-v1, Celeb-DF-v2, DFDCP, DFDC, DeeperForensics-1.0, UADFV]
|
18 |
+
train_dataset: [Celeb-DF-v1, DFDCP, UADFV]
|
19 |
+
test_dataset: [Celeb-DF-v1, DFDCP, UADFV]
|
20 |
+
|
21 |
+
compression: c23 # compression-level for videos
|
22 |
+
train_batchSize: 32 # training batch size
|
23 |
+
test_batchSize: 32 # test batch size
|
24 |
+
workers: 8 # number of data loading workers
|
25 |
+
frame_num: {'train': 32, 'test': 32} # number of frames to use per video in training and testing
|
26 |
+
resolution: 256 # resolution of output image to network
|
27 |
+
with_mask: false # whether to include mask information in the input
|
28 |
+
with_landmark: false # whether to include facial landmark information in the input
|
29 |
+
|
30 |
+
|
31 |
+
# data augmentation
|
32 |
+
use_data_augmentation: true # Add this flag to enable/disable data augmentation
|
33 |
+
data_aug:
|
34 |
+
flip_prob: 0.5
|
35 |
+
rotate_prob: 0.0
|
36 |
+
rotate_limit: [-10, 10]
|
37 |
+
blur_prob: 0.5
|
38 |
+
blur_limit: [3, 7]
|
39 |
+
brightness_prob: 0.5
|
40 |
+
brightness_limit: [-0.1, 0.1]
|
41 |
+
contrast_limit: [-0.1, 0.1]
|
42 |
+
quality_lower: 40
|
43 |
+
quality_upper: 100
|
44 |
+
|
45 |
+
# mean and std for normalization
|
46 |
+
mean: [0.5, 0.5, 0.5]
|
47 |
+
std: [0.5, 0.5, 0.5]
|
48 |
+
|
49 |
+
# optimizer config
|
50 |
+
optimizer:
|
51 |
+
# choose between 'adam' and 'sgd'
|
52 |
+
type: adam
|
53 |
+
adam:
|
54 |
+
lr: 0.0002 # learning rate
|
55 |
+
beta1: 0.9 # beta1 for Adam optimizer
|
56 |
+
beta2: 0.999 # beta2 for Adam optimizer
|
57 |
+
eps: 0.00000001 # epsilon for Adam optimizer
|
58 |
+
weight_decay: 0.0005 # weight decay for regularization
|
59 |
+
amsgrad: false
|
60 |
+
sgd:
|
61 |
+
lr: 0.0002 # learning rate
|
62 |
+
momentum: 0.9 # momentum for SGD optimizer
|
63 |
+
weight_decay: 0.0005 # weight decay for regularization
|
64 |
+
|
65 |
+
# training config
|
66 |
+
lr_scheduler: null # learning rate scheduler
|
67 |
+
nEpochs: 10 # number of epochs to train for
|
68 |
+
start_epoch: 0 # manual epoch number (useful for restarts)
|
69 |
+
save_epoch: 1 # interval epochs for saving models
|
70 |
+
rec_iter: 100 # interval iterations for recording
|
71 |
+
logdir: ./logs # folder to output images and logs
|
72 |
+
manualSeed: 1024 # manual seed for random number generation
|
73 |
+
save_ckpt: true # whether to save checkpoint
|
74 |
+
save_feat: true # whether to save features
|
75 |
+
|
76 |
+
# loss function
|
77 |
+
loss_func: cross_entropy # loss function to use
|
78 |
+
losstype: null
|
79 |
+
|
80 |
+
# metric
|
81 |
+
metric_scoring: auc # metric for evaluation (auc, acc, eer, ap)
|
82 |
+
|
83 |
+
# cuda
|
84 |
+
|
85 |
+
cuda: true # whether to use CUDA acceleration
|
86 |
+
cudnn: true # whether to use CuDNN for convolution operations
|
training/config/config/test_config.yaml
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mode: test
|
2 |
+
lmdb: False
|
3 |
+
dataset_root_rgb: './datasets'
|
4 |
+
lmdb_dir: 'I:\transform_2_lmdb'
|
5 |
+
dataset_json_folder: '/teamspace/studios/this_studio/DeepfakeBench/preprocessing/dataset_json'
|
6 |
+
label_dict:
|
7 |
+
# DFD
|
8 |
+
DFD_fake: 1
|
9 |
+
DFD_real: 0
|
10 |
+
# FF++ + FaceShifter(FF-real+FF-FH)
|
11 |
+
FF-SH: 1
|
12 |
+
FF-F2F: 1
|
13 |
+
FF-DF: 1
|
14 |
+
FF-FS: 1
|
15 |
+
FF-NT: 1
|
16 |
+
FF-FH: 1
|
17 |
+
FF-real: 0
|
18 |
+
# CelebDF
|
19 |
+
CelebDFv1_real: 0
|
20 |
+
CelebDFv1_fake: 1
|
21 |
+
CelebDFv2_real: 0
|
22 |
+
CelebDFv2_fake: 1
|
23 |
+
# DFDCP
|
24 |
+
DFDCP_Real: 0
|
25 |
+
DFDCP_FakeA: 1
|
26 |
+
DFDCP_FakeB: 1
|
27 |
+
# DFDC
|
28 |
+
DFDC_Fake: 1
|
29 |
+
DFDC_Real: 0
|
30 |
+
# DeeperForensics-1.0
|
31 |
+
DF_fake: 1
|
32 |
+
DF_real: 0
|
33 |
+
# UADFV
|
34 |
+
UADFV_Fake: 1
|
35 |
+
UADFV_Real: 0
|
36 |
+
# Roop
|
37 |
+
roop_Real: 0
|
38 |
+
roop_Fake: 1
|
training/config/config/train_config.yaml
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mode: train
|
2 |
+
lmdb: False
|
3 |
+
dry_run: false
|
4 |
+
dataset_root_rgb: './datasets'
|
5 |
+
lmdb_dir: 'I:\transform_2_lmdb'
|
6 |
+
dataset_json_folder: '/teamspace/studios/this_studio/DeepfakeBench/preprocessing/dataset_json'
|
7 |
+
SWA: False
|
8 |
+
save_avg: True
|
9 |
+
log_dir: ./logs/training/
|
10 |
+
# label settings
|
11 |
+
label_dict:
|
12 |
+
# DFD
|
13 |
+
DFD_fake: 1
|
14 |
+
DFD_real: 0
|
15 |
+
# FF++ + FaceShifter(FF-real+FF-FH)
|
16 |
+
FF-SH: 1
|
17 |
+
FF-F2F: 1
|
18 |
+
FF-DF: 1
|
19 |
+
FF-FS: 1
|
20 |
+
FF-NT: 1
|
21 |
+
FF-FH: 1
|
22 |
+
FF-real: 0
|
23 |
+
# CelebDF
|
24 |
+
CelebDFv1_real: 0
|
25 |
+
CelebDFv1_fake: 1
|
26 |
+
CelebDFv2_real: 0
|
27 |
+
CelebDFv2_fake: 1
|
28 |
+
# DFDCP
|
29 |
+
DFDCP_Real: 0
|
30 |
+
DFDCP_FakeA: 1
|
31 |
+
DFDCP_FakeB: 1
|
32 |
+
# DFDC
|
33 |
+
DFDC_Fake: 1
|
34 |
+
DFDC_Real: 0
|
35 |
+
# DeeperForensics-1.0
|
36 |
+
DF_fake: 1
|
37 |
+
DF_real: 0
|
38 |
+
# UADFV
|
39 |
+
UADFV_Fake: 1
|
40 |
+
UADFV_Real: 0
|
41 |
+
# Roop
|
42 |
+
roop_Real: 0
|
43 |
+
roop_Fake: 1
|
training/config/detector/efficientnetb4.yaml
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# log dir
|
2 |
+
log_dir: logs/evaluations/effnb4
|
3 |
+
|
4 |
+
# model setting
|
5 |
+
# pretrained: /home/zhiyuanyan/disfin/deepfake_benchmark/training/pretrained/xception-b5690688.pth # path to a pre-trained model, if using one
|
6 |
+
pretrained: ./training/pretrained/efficientnet-b4-6ed6700e.pth # path to a pre-trained model, if using one
|
7 |
+
model_name: efficientnetb4 # model name
|
8 |
+
backbone_name: efficientnetb4 # backbone name
|
9 |
+
|
10 |
+
#backbone setting
|
11 |
+
backbone_config:
|
12 |
+
num_classes: 2
|
13 |
+
inc: 3
|
14 |
+
dropout: false
|
15 |
+
mode: Original
|
16 |
+
|
17 |
+
# dataset
|
18 |
+
all_dataset: [FaceForensics++, FF-F2F, FF-DF, FF-FS, FF-NT, FaceShifter, DeepFakeDetection, Celeb-DF-v1, Celeb-DF-v2, DFDCP, DFDC, DeeperForensics-1.0, UADFV]
|
19 |
+
train_dataset: [FF-NT]
|
20 |
+
test_dataset: [FaceForensics++, FF-F2F, FF-DF, FF-FS, FF-NT]
|
21 |
+
|
22 |
+
compression: c23 # compression-level for videos
|
23 |
+
train_batchSize: 32 # training batch size
|
24 |
+
test_batchSize: 32 # test batch size
|
25 |
+
workers: 8 # number of data loading workers
|
26 |
+
frame_num: {'train': 32, 'test': 32} # number of frames to use per video in training and testing
|
27 |
+
resolution: 256 # resolution of output image to network
|
28 |
+
with_mask: false # whether to include mask information in the input
|
29 |
+
with_landmark: false # whether to include facial landmark information in the input
|
30 |
+
save_ckpt: true # whether to save checkpoint
|
31 |
+
save_feat: true # whether to save features
|
32 |
+
|
33 |
+
|
34 |
+
# data augmentation
|
35 |
+
use_data_augmentation: true # Add this flag to enable/disable data augmentation
|
36 |
+
data_aug:
|
37 |
+
flip_prob: 0.5
|
38 |
+
rotate_prob: 0.5
|
39 |
+
rotate_limit: [-10, 10]
|
40 |
+
blur_prob: 0.5
|
41 |
+
blur_limit: [3, 7]
|
42 |
+
brightness_prob: 0.5
|
43 |
+
brightness_limit: [-0.1, 0.1]
|
44 |
+
contrast_limit: [-0.1, 0.1]
|
45 |
+
quality_lower: 40
|
46 |
+
quality_upper: 100
|
47 |
+
|
48 |
+
# mean and std for normalization
|
49 |
+
mean: [0.5, 0.5, 0.5]
|
50 |
+
std: [0.5, 0.5, 0.5]
|
51 |
+
|
52 |
+
# optimizer config
|
53 |
+
optimizer:
|
54 |
+
# choose between 'adam' and 'sgd'
|
55 |
+
type: adam
|
56 |
+
adam:
|
57 |
+
lr: 0.0002 # learning rate
|
58 |
+
beta1: 0.9 # beta1 for Adam optimizer
|
59 |
+
beta2: 0.999 # beta2 for Adam optimizer
|
60 |
+
eps: 0.00000001 # epsilon for Adam optimizer
|
61 |
+
weight_decay: 0.0005 # weight decay for regularization
|
62 |
+
amsgrad: false
|
63 |
+
sgd:
|
64 |
+
lr: 0.0002 # learning rate
|
65 |
+
momentum: 0.9 # momentum for SGD optimizer
|
66 |
+
weight_decay: 0.0005 # weight decay for regularization
|
67 |
+
|
68 |
+
# training config
|
69 |
+
lr_scheduler: null # learning rate scheduler
|
70 |
+
nEpochs: 10 # number of epochs to train for
|
71 |
+
start_epoch: 0 # manual epoch number (useful for restarts)
|
72 |
+
save_epoch: 1 # interval epochs for saving models
|
73 |
+
rec_iter: 100 # interval iterations for recording
|
74 |
+
logdir: ./logs # folder to output images and logs
|
75 |
+
manualSeed: 1024 # manual seed for random number generation
|
76 |
+
save_ckpt: false # whether to save checkpoint
|
77 |
+
|
78 |
+
# loss function
|
79 |
+
loss_func: cross_entropy # loss function to use
|
80 |
+
losstype: null
|
81 |
+
|
82 |
+
# metric
|
83 |
+
metric_scoring: auc # metric for evaluation (auc, acc, eer, ap)
|
84 |
+
|
85 |
+
# cuda
|
86 |
+
|
87 |
+
cuda: true # whether to use CUDA acceleration
|
88 |
+
cudnn: true # whether to use CuDNN for convolution operations
|
training/config/detector/ucf.yaml
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# log dir
|
2 |
+
log_dir: /data/home/zhiyuanyan/DeepfakeBench/debug_logs/ucf
|
3 |
+
|
4 |
+
# model setting
|
5 |
+
pretrained: /teamspace/studios/this_studio/DeepfakeBench/training/pretrained/xception-b5690688.pth # path to a pre-trained model, if using one
|
6 |
+
# pretrained: '/home/zhiyuanyan/.cache/torch/hub/checkpoints/resnet34-b627a593.pth' # path to a pre-trained model, if using one
|
7 |
+
model_name: ucf # model name
|
8 |
+
backbone_name: xception # backbone name
|
9 |
+
encoder_feat_dim: 512 # feature dimension of the backbone
|
10 |
+
|
11 |
+
#backbone setting
|
12 |
+
backbone_config:
|
13 |
+
mode: adjust_channel
|
14 |
+
num_classes: 2
|
15 |
+
inc: 3
|
16 |
+
dropout: false
|
17 |
+
|
18 |
+
# dataset
|
19 |
+
all_dataset: [FaceForensics++, FF-F2F, FF-DF, FF-FS, FF-NT, FaceShifter, DeepFakeDetection, Celeb-DF-v1, Celeb-DF-v2, DFDCP, DFDC, DeeperForensics-1.0, UADFV]
|
20 |
+
train_dataset: [FF-F2F, FF-DF, FF-FS, FF-NT,]
|
21 |
+
test_dataset: [Celeb-DF-v2]
|
22 |
+
dataset_type: pair
|
23 |
+
|
24 |
+
compression: c23 # compression-level for videos
|
25 |
+
train_batchSize: 16 # training batch size
|
26 |
+
test_batchSize: 32 # test batch size
|
27 |
+
workers: 8 # number of data loading workers
|
28 |
+
frame_num: {'train': 32, 'test': 32} # number of frames to use per video in training and testing
|
29 |
+
resolution: 256 # resolution of output image to network
|
30 |
+
with_mask: false # whether to include mask information in the input
|
31 |
+
with_landmark: false # whether to include facial landmark information in the input
|
32 |
+
save_ckpt: true # whether to save checkpoint
|
33 |
+
save_feat: true # whether to save features
|
34 |
+
|
35 |
+
# label settings
|
36 |
+
label_dict:
|
37 |
+
# DFD
|
38 |
+
DFD_fake: 1
|
39 |
+
DFD_real: 0
|
40 |
+
FaceShifter: 1
|
41 |
+
FF-FH: 1
|
42 |
+
# FF++ + FaceShifter(FF-real+FF-FH)
|
43 |
+
# ucf specific label setting
|
44 |
+
FF-DF: 1
|
45 |
+
FF-F2F: 2
|
46 |
+
FF-FS: 3
|
47 |
+
FF-NT: 4
|
48 |
+
FF-real: 0
|
49 |
+
# CelebDF
|
50 |
+
CelebDFv1_real: 0
|
51 |
+
CelebDFv1_fake: 1
|
52 |
+
CelebDFv2_real: 0
|
53 |
+
CelebDFv2_fake: 1
|
54 |
+
# DFDCP
|
55 |
+
DFDCP_Real: 0
|
56 |
+
DFDCP_FakeA: 1
|
57 |
+
DFDCP_FakeB: 1
|
58 |
+
# DFDC
|
59 |
+
DFDC_Fake: 1
|
60 |
+
DFDC_Real: 0
|
61 |
+
# DeeperForensics-1.0
|
62 |
+
DF_fake: 1
|
63 |
+
DF_real: 0
|
64 |
+
# UADFV
|
65 |
+
UADFV_Fake: 1
|
66 |
+
UADFV_Real: 0
|
67 |
+
# roop
|
68 |
+
roop_Fake: 1
|
69 |
+
roop_Real: 0
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
# data augmentation
|
74 |
+
use_data_augmentation: true # Add this flag to enable/disable data augmentation
|
75 |
+
data_aug:
|
76 |
+
flip_prob: 0.5
|
77 |
+
rotate_prob: 0.5
|
78 |
+
rotate_limit: [-10, 10]
|
79 |
+
blur_prob: 0.5
|
80 |
+
blur_limit: [3, 7]
|
81 |
+
brightness_prob: 0.5
|
82 |
+
brightness_limit: [-0.1, 0.1]
|
83 |
+
contrast_limit: [-0.1, 0.1]
|
84 |
+
quality_lower: 40
|
85 |
+
quality_upper: 100
|
86 |
+
|
87 |
+
# mean and std for normalization
|
88 |
+
mean: [0.5, 0.5, 0.5]
|
89 |
+
std: [0.5, 0.5, 0.5]
|
90 |
+
|
91 |
+
# optimizer config
|
92 |
+
optimizer:
|
93 |
+
# choose between 'adam' and 'sgd'
|
94 |
+
type: adam
|
95 |
+
adam:
|
96 |
+
lr: 0.0002 # learning rate
|
97 |
+
beta1: 0.9 # beta1 for Adam optimizer
|
98 |
+
beta2: 0.999 # beta2 for Adam optimizer
|
99 |
+
eps: 0.00000001 # epsilon for Adam optimizer
|
100 |
+
weight_decay: 0.0005 # weight decay for regularization
|
101 |
+
amsgrad: false
|
102 |
+
sgd:
|
103 |
+
lr: 0.0002 # learning rate
|
104 |
+
momentum: 0.9 # momentum for SGD optimizer
|
105 |
+
weight_decay: 0.0005 # weight decay for regularization
|
106 |
+
|
107 |
+
# training config
|
108 |
+
lr_scheduler: null # learning rate scheduler
|
109 |
+
nEpochs: 5 # number of epochs to train for
|
110 |
+
start_epoch: 0 # manual epoch number (useful for restarts)
|
111 |
+
save_epoch: 1 # interval epochs for saving models
|
112 |
+
rec_iter: 100 # interval iterations for recording
|
113 |
+
logdir: ./logs # folder to output images and logs
|
114 |
+
manualSeed: 1024 # manual seed for random number generation
|
115 |
+
save_ckpt: false # whether to save checkpoint
|
116 |
+
|
117 |
+
# loss function
|
118 |
+
loss_func:
|
119 |
+
cls_loss: cross_entropy # loss function to use
|
120 |
+
spe_loss: cross_entropy
|
121 |
+
con_loss: contrastive_regularization
|
122 |
+
rec_loss: l1loss
|
123 |
+
losstype: null
|
124 |
+
|
125 |
+
# metric
|
126 |
+
metric_scoring: auc # metric for evaluation (auc, acc, eer, ap)
|
127 |
+
|
128 |
+
# cuda
|
129 |
+
|
130 |
+
cuda: true # whether to use CUDA acceleration
|
131 |
+
cudnn: true # whether to use CuDNN for convolution operations
|
training/config/detector/xception.yaml
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# log dir
|
2 |
+
log_dir: /teamspace/studios/this_studio/DeepfakeBench/logs/testing_bench
|
3 |
+
|
4 |
+
# model setting
|
5 |
+
pretrained: /teamspace/studios/this_studio/DeepfakeBench/training/pretrained/xception-b5690688.pth # path to a pre-trained model, if using one
|
6 |
+
model_name: xception # model name
|
7 |
+
backbone_name: xception # backbone name
|
8 |
+
|
9 |
+
#backbone setting
|
10 |
+
backbone_config:
|
11 |
+
mode: original
|
12 |
+
num_classes: 2
|
13 |
+
inc: 3
|
14 |
+
dropout: false
|
15 |
+
|
16 |
+
# dataset
|
17 |
+
all_dataset: [FaceForensics++, FF-F2F, FF-DF, FF-FS, FF-NT, FaceShifter, DeepFakeDetection, Celeb-DF-v1, Celeb-DF-v2, DFDCP, DFDC, DeeperForensics-1.0, UADFV]
|
18 |
+
train_dataset: [Celeb-DF-v1, DFDCP]
|
19 |
+
test_dataset: [UADFV]
|
20 |
+
|
21 |
+
compression: c23 # compression-level for videos
|
22 |
+
train_batchSize: 32 # training batch size
|
23 |
+
test_batchSize: 32 # test batch size
|
24 |
+
workers: 8 # number of data loading workers
|
25 |
+
frame_num: {'train': 32, 'test': 32} # number of frames to use per video in training and testing
|
26 |
+
resolution: 256 # resolution of output image to network
|
27 |
+
with_mask: false # whether to include mask information in the input
|
28 |
+
with_landmark: false # whether to include facial landmark information in the input
|
29 |
+
|
30 |
+
|
31 |
+
# data augmentation
|
32 |
+
use_data_augmentation: true # Add this flag to enable/disable data augmentation
|
33 |
+
data_aug:
|
34 |
+
flip_prob: 0.5
|
35 |
+
rotate_prob: 0.0
|
36 |
+
rotate_limit: [-10, 10]
|
37 |
+
blur_prob: 0.5
|
38 |
+
blur_limit: [3, 7]
|
39 |
+
brightness_prob: 0.5
|
40 |
+
brightness_limit: [-0.1, 0.1]
|
41 |
+
contrast_limit: [-0.1, 0.1]
|
42 |
+
quality_lower: 40
|
43 |
+
quality_upper: 100
|
44 |
+
|
45 |
+
# mean and std for normalization
|
46 |
+
mean: [0.5, 0.5, 0.5]
|
47 |
+
std: [0.5, 0.5, 0.5]
|
48 |
+
|
49 |
+
# optimizer config
|
50 |
+
optimizer:
|
51 |
+
# choose between 'adam' and 'sgd'
|
52 |
+
type: adam
|
53 |
+
adam:
|
54 |
+
lr: 0.0002 # learning rate
|
55 |
+
beta1: 0.9 # beta1 for Adam optimizer
|
56 |
+
beta2: 0.999 # beta2 for Adam optimizer
|
57 |
+
eps: 0.00000001 # epsilon for Adam optimizer
|
58 |
+
weight_decay: 0.0005 # weight decay for regularization
|
59 |
+
amsgrad: false
|
60 |
+
sgd:
|
61 |
+
lr: 0.0002 # learning rate
|
62 |
+
momentum: 0.9 # momentum for SGD optimizer
|
63 |
+
weight_decay: 0.0005 # weight decay for regularization
|
64 |
+
|
65 |
+
# training config
|
66 |
+
lr_scheduler: null # learning rate scheduler
|
67 |
+
nEpochs: 10 # number of epochs to train for
|
68 |
+
start_epoch: 0 # manual epoch number (useful for restarts)
|
69 |
+
save_epoch: 1 # interval epochs for saving models
|
70 |
+
rec_iter: 100 # interval iterations for recording
|
71 |
+
logdir: ./logs # folder to output images and logs
|
72 |
+
manualSeed: 1024 # manual seed for random number generation
|
73 |
+
save_ckpt: true # whether to save checkpoint
|
74 |
+
save_feat: true # whether to save features
|
75 |
+
|
76 |
+
# loss function
|
77 |
+
loss_func: cross_entropy # loss function to use
|
78 |
+
losstype: null
|
79 |
+
|
80 |
+
# metric
|
81 |
+
metric_scoring: auc # metric for evaluation (auc, acc, eer, ap)
|
82 |
+
|
83 |
+
# cuda
|
84 |
+
|
85 |
+
cuda: true # whether to use CUDA acceleration
|
86 |
+
cudnn: true # whether to use CuDNN for convolution operations
|
training/config/test_config.yaml
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mode: test
|
2 |
+
lmdb: False
|
3 |
+
rgb_dir: ''
|
4 |
+
lmdb_dir: './datasets/lmdb'
|
5 |
+
dataset_json_folder: './preprocessing/dataset_json'
|
6 |
+
label_dict:
|
7 |
+
# DFD
|
8 |
+
DFD_fake: 1
|
9 |
+
DFD_real: 0
|
10 |
+
# FF++ + FaceShifter(FF-real+FF-FH)
|
11 |
+
FF-SH: 1
|
12 |
+
FF-F2F: 1
|
13 |
+
FF-DF: 1
|
14 |
+
FF-FS: 1
|
15 |
+
FF-NT: 1
|
16 |
+
FF-FH: 1
|
17 |
+
FF-real: 0
|
18 |
+
# CelebDF
|
19 |
+
CelebDFv1_real: 0
|
20 |
+
CelebDFv1_fake: 1
|
21 |
+
CelebDFv2_real: 0
|
22 |
+
CelebDFv2_fake: 1
|
23 |
+
# DFDCP
|
24 |
+
DFDCP_Real: 0
|
25 |
+
DFDCP_FakeA: 1
|
26 |
+
DFDCP_FakeB: 1
|
27 |
+
# DFDC
|
28 |
+
DFDC_Fake: 1
|
29 |
+
DFDC_Real: 0
|
30 |
+
# DeeperForensics-1.0
|
31 |
+
DF_fake: 1
|
32 |
+
DF_real: 0
|
33 |
+
# UADFV
|
34 |
+
UADFV_Fake: 1
|
35 |
+
UADFV_Real: 0
|
36 |
+
# Roop
|
37 |
+
roop_Real: 0
|
38 |
+
roop_Fake: 1
|
training/config/train_config.yaml
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mode: train
|
2 |
+
lmdb: False
|
3 |
+
dry_run: false
|
4 |
+
rgb_dir: ''
|
5 |
+
lmdb_dir: './datasets/lmdb'
|
6 |
+
dataset_json_folder: './preprocessing/dataset_json'
|
7 |
+
SWA: False
|
8 |
+
save_avg: True
|
9 |
+
log_dir: ./logs/training/
|
10 |
+
# label settings
|
11 |
+
label_dict:
|
12 |
+
# DFD
|
13 |
+
DFD_fake: 1
|
14 |
+
DFD_real: 0
|
15 |
+
# FF++ + FaceShifter(FF-real+FF-FH)
|
16 |
+
FF-SH: 1
|
17 |
+
FF-F2F: 1
|
18 |
+
FF-DF: 1
|
19 |
+
FF-FS: 1
|
20 |
+
FF-NT: 1
|
21 |
+
FF-FH: 1
|
22 |
+
FF-real: 0
|
23 |
+
# CelebDF
|
24 |
+
CelebDFv1_real: 0
|
25 |
+
CelebDFv1_fake: 1
|
26 |
+
CelebDFv2_real: 0
|
27 |
+
CelebDFv2_fake: 1
|
28 |
+
# DFDCP
|
29 |
+
DFDCP_Real: 0
|
30 |
+
DFDCP_FakeA: 1
|
31 |
+
DFDCP_FakeB: 1
|
32 |
+
# DFDC
|
33 |
+
DFDC_Fake: 1
|
34 |
+
DFDC_Real: 0
|
35 |
+
# DeeperForensics-1.0
|
36 |
+
DF_fake: 1
|
37 |
+
DF_real: 0
|
38 |
+
# UADFV
|
39 |
+
UADFV_Fake: 1
|
40 |
+
UADFV_Real: 0
|
41 |
+
# Roop
|
42 |
+
roop_Real: 0
|
43 |
+
roop_Fake: 1
|
training/dataset/I2G_dataset.py
ADDED
@@ -0,0 +1,389 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Created by: Kaede Shiohara
|
2 |
+
# Yamasaki Lab at The University of Tokyo
|
3 | |
4 |
+
# Copyright (c) 2021
|
5 |
+
# 3rd party softwares' licenses are noticed at https://github.com/mapooon/SelfBlendedImages/blob/master/LICENSE
|
6 |
+
import logging
|
7 |
+
import os
|
8 |
+
import pickle
|
9 |
+
|
10 |
+
import cv2
|
11 |
+
import numpy as np
|
12 |
+
import scipy as sp
|
13 |
+
import yaml
|
14 |
+
from skimage.measure import label, regionprops
|
15 |
+
import random
|
16 |
+
from PIL import Image
|
17 |
+
import sys
|
18 |
+
import albumentations as A
|
19 |
+
from torch.utils.data import DataLoader
|
20 |
+
from dataset.utils.bi_online_generation import random_get_hull
|
21 |
+
from dataset.abstract_dataset import DeepfakeAbstractBaseDataset
|
22 |
+
from dataset.pair_dataset import pairDataset
|
23 |
+
import torch
|
24 |
+
|
25 |
+
class RandomDownScale(A.core.transforms_interface.ImageOnlyTransform):
|
26 |
+
def apply(self, img, ratio_list=None, **params):
|
27 |
+
if ratio_list is None:
|
28 |
+
ratio_list = [2, 4]
|
29 |
+
r = ratio_list[np.random.randint(len(ratio_list))]
|
30 |
+
return self.randomdownscale(img, r)
|
31 |
+
|
32 |
+
def randomdownscale(self, img, r):
|
33 |
+
keep_ratio = True
|
34 |
+
keep_input_shape = True
|
35 |
+
H, W, C = img.shape
|
36 |
+
|
37 |
+
img_ds = cv2.resize(img, (int(W / r), int(H / r)), interpolation=cv2.INTER_NEAREST)
|
38 |
+
if keep_input_shape:
|
39 |
+
img_ds = cv2.resize(img_ds, (W, H), interpolation=cv2.INTER_LINEAR)
|
40 |
+
|
41 |
+
return img_ds
|
42 |
+
|
43 |
+
|
44 |
+
'''
|
45 |
+
from PIL import ImageDraw
|
46 |
+
# 创建一个可以在图像上绘制的对象
|
47 |
+
img_pil=Image.fromarray(img)
|
48 |
+
draw = ImageDraw.Draw(img_pil)
|
49 |
+
|
50 |
+
# 在图像上绘制点
|
51 |
+
for i, point in enumerate(landmark):
|
52 |
+
x, y = point
|
53 |
+
radius = 1 # 点的半径
|
54 |
+
draw.ellipse((x-radius, y-radius, x+radius, y+radius), fill="red")
|
55 |
+
draw.text((x+radius+2, y-radius), str(i), fill="black") # 在点旁边添加标签
|
56 |
+
img_pil.show()
|
57 |
+
|
58 |
+
'''
|
59 |
+
|
60 |
+
def alpha_blend(source, target, mask):
|
61 |
+
mask_blured = get_blend_mask(mask)
|
62 |
+
img_blended = (mask_blured * source + (1 - mask_blured) * target)
|
63 |
+
return img_blended, mask_blured
|
64 |
+
|
65 |
+
|
66 |
+
def dynamic_blend(source, target, mask):
|
67 |
+
mask_blured = get_blend_mask(mask)
|
68 |
+
# worth consideration, 1 in the official paper, 0.25, 0.5, 0.75,1,1,1 in sbi.
|
69 |
+
blend_list = [1, 1, 1]
|
70 |
+
blend_ratio = blend_list[np.random.randint(len(blend_list))]
|
71 |
+
mask_blured *= blend_ratio
|
72 |
+
img_blended = (mask_blured * source + (1 - mask_blured) * target)
|
73 |
+
return img_blended, mask_blured
|
74 |
+
|
75 |
+
|
76 |
+
def get_blend_mask(mask):
|
77 |
+
H, W = mask.shape
|
78 |
+
size_h = np.random.randint(192, 257)
|
79 |
+
size_w = np.random.randint(192, 257)
|
80 |
+
mask = cv2.resize(mask, (size_w, size_h))
|
81 |
+
kernel_1 = random.randrange(5, 26, 2)
|
82 |
+
kernel_1 = (kernel_1, kernel_1)
|
83 |
+
kernel_2 = random.randrange(5, 26, 2)
|
84 |
+
kernel_2 = (kernel_2, kernel_2)
|
85 |
+
|
86 |
+
mask_blured = cv2.GaussianBlur(mask, kernel_1, 0)
|
87 |
+
mask_blured = mask_blured / (mask_blured.max())
|
88 |
+
mask_blured[mask_blured < 1] = 0
|
89 |
+
|
90 |
+
mask_blured = cv2.GaussianBlur(mask_blured, kernel_2, np.random.randint(5, 46))
|
91 |
+
mask_blured = mask_blured / (mask_blured.max())
|
92 |
+
mask_blured = cv2.resize(mask_blured, (W, H))
|
93 |
+
return mask_blured.reshape((mask_blured.shape + (1,)))
|
94 |
+
|
95 |
+
|
96 |
+
def get_alpha_blend_mask(mask):
|
97 |
+
kernel_list = [(11, 11), (9, 9), (7, 7), (5, 5), (3, 3)]
|
98 |
+
blend_list = [0.25, 0.5, 0.75]
|
99 |
+
kernel_idxs = random.choices(range(len(kernel_list)), k=2)
|
100 |
+
blend_ratio = blend_list[random.sample(range(len(blend_list)), 1)[0]]
|
101 |
+
mask_blured = cv2.GaussianBlur(mask, kernel_list[0], 0)
|
102 |
+
# print(mask_blured.max())
|
103 |
+
mask_blured[mask_blured < mask_blured.max()] = 0
|
104 |
+
mask_blured[mask_blured > 0] = 1
|
105 |
+
# mask_blured = mask
|
106 |
+
mask_blured = cv2.GaussianBlur(mask_blured, kernel_list[kernel_idxs[1]], 0)
|
107 |
+
mask_blured = mask_blured / (mask_blured.max())
|
108 |
+
return mask_blured.reshape((mask_blured.shape + (1,)))
|
109 |
+
|
110 |
+
|
111 |
+
class I2GDataset(DeepfakeAbstractBaseDataset):
|
112 |
+
def __init__(self, config=None, mode='train'):
|
113 |
+
#config['GridShuffle']['p'] = 0
|
114 |
+
super().__init__(config, mode)
|
115 |
+
real_images_list = [img for img, label in zip(self.image_list, self.label_list) if label == 0]
|
116 |
+
self.real_images_list = list(set(real_images_list)) # de-duplicate since DF,F2F,FS,NT have same real images
|
117 |
+
self.source_transforms = self.get_source_transforms()
|
118 |
+
self.transforms = self.get_transforms()
|
119 |
+
self.init_nearest()
|
120 |
+
|
121 |
+
def init_nearest(self):
|
122 |
+
if os.path.exists('training/lib/nearest_face_info.pkl'):
|
123 |
+
with open('training/lib/nearest_face_info.pkl', 'rb') as f:
|
124 |
+
face_info = pickle.load(f)
|
125 |
+
self.face_info = face_info
|
126 |
+
# Check if the dictionary has already been created
|
127 |
+
if os.path.exists('training/lib/landmark_dict_ffall.pkl'):
|
128 |
+
with open('training/lib/landmark_dict_ffall.pkl', 'rb') as f:
|
129 |
+
landmark_dict = pickle.load(f)
|
130 |
+
self.landmark_dict = landmark_dict
|
131 |
+
|
132 |
+
def reorder_landmark(self, landmark):
|
133 |
+
landmark = landmark.copy() # 创建landmark的副本
|
134 |
+
landmark_add = np.zeros((13, 2))
|
135 |
+
for idx, idx_l in enumerate([77, 75, 76, 68, 69, 70, 71, 80, 72, 73, 79, 74, 78]):
|
136 |
+
landmark_add[idx] = landmark[idx_l]
|
137 |
+
landmark[68:] = landmark_add
|
138 |
+
return landmark
|
139 |
+
|
140 |
+
def hflip(self, img, mask=None, landmark=None, bbox=None):
|
141 |
+
H, W = img.shape[:2]
|
142 |
+
landmark = landmark.copy()
|
143 |
+
if bbox is not None:
|
144 |
+
bbox = bbox.copy()
|
145 |
+
|
146 |
+
if landmark is not None:
|
147 |
+
landmark_new = np.zeros_like(landmark)
|
148 |
+
|
149 |
+
landmark_new[:17] = landmark[:17][::-1]
|
150 |
+
landmark_new[17:27] = landmark[17:27][::-1]
|
151 |
+
|
152 |
+
landmark_new[27:31] = landmark[27:31]
|
153 |
+
landmark_new[31:36] = landmark[31:36][::-1]
|
154 |
+
|
155 |
+
landmark_new[36:40] = landmark[42:46][::-1]
|
156 |
+
landmark_new[40:42] = landmark[46:48][::-1]
|
157 |
+
|
158 |
+
landmark_new[42:46] = landmark[36:40][::-1]
|
159 |
+
landmark_new[46:48] = landmark[40:42][::-1]
|
160 |
+
|
161 |
+
landmark_new[48:55] = landmark[48:55][::-1]
|
162 |
+
landmark_new[55:60] = landmark[55:60][::-1]
|
163 |
+
|
164 |
+
landmark_new[60:65] = landmark[60:65][::-1]
|
165 |
+
landmark_new[65:68] = landmark[65:68][::-1]
|
166 |
+
if len(landmark) == 68:
|
167 |
+
pass
|
168 |
+
elif len(landmark) == 81:
|
169 |
+
landmark_new[68:81] = landmark[68:81][::-1]
|
170 |
+
else:
|
171 |
+
raise NotImplementedError
|
172 |
+
landmark_new[:, 0] = W - landmark_new[:, 0]
|
173 |
+
|
174 |
+
else:
|
175 |
+
landmark_new = None
|
176 |
+
|
177 |
+
if bbox is not None:
|
178 |
+
bbox_new = np.zeros_like(bbox)
|
179 |
+
bbox_new[0, 0] = bbox[1, 0]
|
180 |
+
bbox_new[1, 0] = bbox[0, 0]
|
181 |
+
bbox_new[:, 0] = W - bbox_new[:, 0]
|
182 |
+
bbox_new[:, 1] = bbox[:, 1].copy()
|
183 |
+
if len(bbox) > 2:
|
184 |
+
bbox_new[2, 0] = W - bbox[3, 0]
|
185 |
+
bbox_new[2, 1] = bbox[3, 1]
|
186 |
+
bbox_new[3, 0] = W - bbox[2, 0]
|
187 |
+
bbox_new[3, 1] = bbox[2, 1]
|
188 |
+
bbox_new[4, 0] = W - bbox[4, 0]
|
189 |
+
bbox_new[4, 1] = bbox[4, 1]
|
190 |
+
bbox_new[5, 0] = W - bbox[6, 0]
|
191 |
+
bbox_new[5, 1] = bbox[6, 1]
|
192 |
+
bbox_new[6, 0] = W - bbox[5, 0]
|
193 |
+
bbox_new[6, 1] = bbox[5, 1]
|
194 |
+
else:
|
195 |
+
bbox_new = None
|
196 |
+
|
197 |
+
if mask is not None:
|
198 |
+
mask = mask[:, ::-1]
|
199 |
+
else:
|
200 |
+
mask = None
|
201 |
+
img = img[:, ::-1].copy()
|
202 |
+
return img, mask, landmark_new, bbox_new
|
203 |
+
|
204 |
+
|
205 |
+
|
206 |
+
def get_source_transforms(self):
|
207 |
+
return A.Compose([
|
208 |
+
A.Compose([
|
209 |
+
A.RGBShift((-20, 20), (-20, 20), (-20, 20), p=0.3),
|
210 |
+
A.HueSaturationValue(hue_shift_limit=(-0.3, 0.3), sat_shift_limit=(-0.3, 0.3),
|
211 |
+
val_shift_limit=(-0.3, 0.3), p=1),
|
212 |
+
A.RandomBrightnessContrast(brightness_limit=(-0.1, 0.1), contrast_limit=(-0.1, 0.1), p=1),
|
213 |
+
], p=1),
|
214 |
+
|
215 |
+
A.OneOf([
|
216 |
+
RandomDownScale(p=1),
|
217 |
+
A.Sharpen(alpha=(0.2, 0.5), lightness=(0.5, 1.0), p=1),
|
218 |
+
], p=1),
|
219 |
+
|
220 |
+
], p=1.)
|
221 |
+
|
222 |
+
def get_fg_bg(self, one_lmk_path):
|
223 |
+
"""
|
224 |
+
Get foreground and background paths
|
225 |
+
"""
|
226 |
+
bg_lmk_path = one_lmk_path
|
227 |
+
# Randomly pick one from the nearest neighbors for the foreground
|
228 |
+
if bg_lmk_path in self.face_info:
|
229 |
+
fg_lmk_path = random.choice(self.face_info[bg_lmk_path])
|
230 |
+
else:
|
231 |
+
fg_lmk_path = bg_lmk_path
|
232 |
+
return fg_lmk_path, bg_lmk_path
|
233 |
+
|
234 |
+
def get_transforms(self):
|
235 |
+
return A.Compose([
|
236 |
+
|
237 |
+
A.RGBShift((-20, 20), (-20, 20), (-20, 20), p=0.3),
|
238 |
+
A.HueSaturationValue(hue_shift_limit=(-0.3, 0.3), sat_shift_limit=(-0.3, 0.3),
|
239 |
+
val_shift_limit=(-0.3, 0.3), p=0.3),
|
240 |
+
A.RandomBrightnessContrast(brightness_limit=(-0.3, 0.3), contrast_limit=(-0.3, 0.3), p=0.3),
|
241 |
+
A.ImageCompression(quality_lower=40, quality_upper=100, p=0.5),
|
242 |
+
|
243 |
+
],
|
244 |
+
additional_targets={f'image1': 'image'},
|
245 |
+
p=1.)
|
246 |
+
|
247 |
+
def randaffine(self, img, mask):
|
248 |
+
f = A.Affine(
|
249 |
+
translate_percent={'x': (-0.03, 0.03), 'y': (-0.015, 0.015)},
|
250 |
+
scale=[0.95, 1 / 0.95],
|
251 |
+
fit_output=False,
|
252 |
+
p=1)
|
253 |
+
|
254 |
+
g = A.ElasticTransform(
|
255 |
+
alpha=50,
|
256 |
+
sigma=7,
|
257 |
+
alpha_affine=0,
|
258 |
+
p=1,
|
259 |
+
)
|
260 |
+
|
261 |
+
transformed = f(image=img, mask=mask)
|
262 |
+
img = transformed['image']
|
263 |
+
|
264 |
+
mask = transformed['mask']
|
265 |
+
transformed = g(image=img, mask=mask)
|
266 |
+
mask = transformed['mask']
|
267 |
+
return img, mask
|
268 |
+
|
269 |
+
def __len__(self):
|
270 |
+
return len(self.real_images_list)
|
271 |
+
|
272 |
+
|
273 |
+
def colorTransfer(self, src, dst, mask):
|
274 |
+
transferredDst = np.copy(dst)
|
275 |
+
maskIndices = np.where(mask != 0)
|
276 |
+
maskedSrc = src[maskIndices[0], maskIndices[1]].astype(np.float32)
|
277 |
+
maskedDst = dst[maskIndices[0], maskIndices[1]].astype(np.float32)
|
278 |
+
|
279 |
+
# Compute means and standard deviations
|
280 |
+
meanSrc = np.mean(maskedSrc, axis=0)
|
281 |
+
stdSrc = np.std(maskedSrc, axis=0)
|
282 |
+
meanDst = np.mean(maskedDst, axis=0)
|
283 |
+
stdDst = np.std(maskedDst, axis=0)
|
284 |
+
|
285 |
+
# Perform color transfer
|
286 |
+
maskedDst = (maskedDst - meanDst) * (stdSrc / stdDst) + meanSrc
|
287 |
+
maskedDst = np.clip(maskedDst, 0, 255)
|
288 |
+
|
289 |
+
# Copy the entire background into transferredDst
|
290 |
+
transferredDst = np.copy(dst)
|
291 |
+
# Now apply color transfer only to the masked region
|
292 |
+
transferredDst[maskIndices[0], maskIndices[1]] = maskedDst.astype(np.uint8)
|
293 |
+
|
294 |
+
return transferredDst
|
295 |
+
|
296 |
+
|
297 |
+
|
298 |
+
def two_blending(self, img_bg, img_fg, landmark):
|
299 |
+
H, W = len(img_bg), len(img_bg[0])
|
300 |
+
if np.random.rand() < 0.25:
|
301 |
+
landmark = landmark[:68]
|
302 |
+
logging.disable(logging.FATAL)
|
303 |
+
mask = random_get_hull(landmark, img_bg)
|
304 |
+
logging.disable(logging.NOTSET)
|
305 |
+
source = img_fg.copy()
|
306 |
+
target = img_bg.copy()
|
307 |
+
# if np.random.rand() < 0.5:
|
308 |
+
# source = self.source_transforms(image=source.astype(np.uint8))['image']
|
309 |
+
# else:
|
310 |
+
# target = self.source_transforms(image=target.astype(np.uint8))['image']
|
311 |
+
source_v2, mask_v2 = self.randaffine(source, mask)
|
312 |
+
source_v3=self.colorTransfer(target,source_v2,mask_v2)
|
313 |
+
img_blended, mask = dynamic_blend(source_v3, target, mask_v2)
|
314 |
+
img_blended = img_blended.astype(np.uint8)
|
315 |
+
img = img_bg.astype(np.uint8)
|
316 |
+
|
317 |
+
return img, img_blended, mask.squeeze(2)
|
318 |
+
|
319 |
+
|
320 |
+
def __getitem__(self, index):
|
321 |
+
image_path_bg = self.real_images_list[index]
|
322 |
+
label = 0
|
323 |
+
|
324 |
+
# Get the mask and landmark paths
|
325 |
+
landmark_path_bg = image_path_bg.replace('frames', 'landmarks').replace('.png', '.npy') # Use .npy for landmark
|
326 |
+
landmark_path_fg, landmark_path_bg = self.get_fg_bg(landmark_path_bg)
|
327 |
+
image_path_fg = landmark_path_fg.replace('landmarks','frames').replace('.npy','.png')
|
328 |
+
try:
|
329 |
+
image_bg = self.load_rgb(image_path_bg)
|
330 |
+
image_fg = self.load_rgb(image_path_fg)
|
331 |
+
except Exception as e:
|
332 |
+
# Skip this image and return the first one
|
333 |
+
print(f"Error loading image at index {index}: {e}")
|
334 |
+
return self.__getitem__(0)
|
335 |
+
image_bg = np.array(image_bg) # Convert to numpy array for data augmentation
|
336 |
+
image_fg = np.array(image_fg) # Convert to numpy array for data augmentation
|
337 |
+
|
338 |
+
landmarks_bg = self.load_landmark(landmark_path_bg)
|
339 |
+
landmarks_fg = self.load_landmark(landmark_path_fg)
|
340 |
+
|
341 |
+
|
342 |
+
landmarks_bg = np.clip(landmarks_bg, 0, self.config['resolution'] - 1)
|
343 |
+
landmarks_bg = self.reorder_landmark(landmarks_bg)
|
344 |
+
|
345 |
+
img_r, img_f, mask_f = self.two_blending(image_bg.copy(), image_fg.copy(),landmarks_bg.copy())
|
346 |
+
transformed = self.transforms(image=img_f.astype('uint8'), image1=img_r.astype('uint8'))
|
347 |
+
img_f = transformed['image']
|
348 |
+
img_r = transformed['image1']
|
349 |
+
# img_f = img_f.transpose((2, 0, 1))
|
350 |
+
# img_r = img_r.transpose((2, 0, 1))
|
351 |
+
img_f = self.normalize(self.to_tensor(img_f))
|
352 |
+
img_r = self.normalize(self.to_tensor(img_r))
|
353 |
+
mask_f = self.to_tensor(mask_f)
|
354 |
+
mask_r=torch.zeros_like(mask_f) # zeros or ones
|
355 |
+
return img_f, img_r, mask_f,mask_r
|
356 |
+
|
357 |
+
@staticmethod
|
358 |
+
def collate_fn(batch):
|
359 |
+
img_f, img_r, mask_f,mask_r = zip(*batch)
|
360 |
+
data = {}
|
361 |
+
fake_mask = torch.stack(mask_f,dim=0)
|
362 |
+
real_mask = torch.stack(mask_r, dim=0)
|
363 |
+
fake_images = torch.stack(img_f, dim=0)
|
364 |
+
real_images = torch.stack(img_r, dim=0)
|
365 |
+
data['image'] = torch.cat([real_images, fake_images], dim=0)
|
366 |
+
data['label'] = torch.tensor([0] * len(img_r) + [1] * len(img_f))
|
367 |
+
data['landmark'] = None
|
368 |
+
data['mask'] = torch.cat([real_mask, fake_mask], dim=0)
|
369 |
+
return data
|
370 |
+
|
371 |
+
|
372 |
+
if __name__ == '__main__':
|
373 |
+
detector_path = r"./training/config/detector/xception.yaml"
|
374 |
+
# weights_path = "./ckpts/xception/CDFv2/tb_v1/ov.pth"
|
375 |
+
with open(detector_path, 'r') as f:
|
376 |
+
config = yaml.safe_load(f)
|
377 |
+
with open('./training/config/train_config.yaml', 'r') as f:
|
378 |
+
config2 = yaml.safe_load(f)
|
379 |
+
config2['data_manner'] = 'lmdb'
|
380 |
+
config['dataset_json_folder'] = 'preprocessing/dataset_json_v3'
|
381 |
+
config.update(config2)
|
382 |
+
dataset = I2GDataset(config=config)
|
383 |
+
batch_size = 2
|
384 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True,collate_fn=dataset.collate_fn)
|
385 |
+
|
386 |
+
for i, batch in enumerate(dataloader):
|
387 |
+
print(f"Batch {i}: {batch}")
|
388 |
+
continue
|
389 |
+
|
training/dataset/__init__.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
current_file_path = os.path.abspath(__file__)
|
4 |
+
parent_dir = os.path.dirname(os.path.dirname(current_file_path))
|
5 |
+
project_root_dir = os.path.dirname(parent_dir)
|
6 |
+
sys.path.append(parent_dir)
|
7 |
+
sys.path.append(project_root_dir)
|
8 |
+
|
9 |
+
|
10 |
+
from .I2G_dataset import I2GDataset
|
11 |
+
from .iid_dataset import IIDDataset
|
12 |
+
from .abstract_dataset import DeepfakeAbstractBaseDataset
|
13 |
+
from .ff_blend import FFBlendDataset
|
14 |
+
from .fwa_blend import FWABlendDataset
|
15 |
+
from .lrl_dataset import LRLDataset
|
16 |
+
from .pair_dataset import pairDataset
|
17 |
+
from .sbi_dataset import SBIDataset
|
18 |
+
from .lsda_dataset import LSDADataset
|
19 |
+
from .tall_dataset import TALLDataset
|
training/dataset/abstract_dataset.py
ADDED
@@ -0,0 +1,621 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# author: Zhiyuan Yan
|
2 |
+
# email: [email protected]
|
3 |
+
# date: 2023-03-30
|
4 |
+
# description: Abstract Base Class for all types of deepfake datasets.
|
5 |
+
|
6 |
+
import sys
|
7 |
+
|
8 |
+
import lmdb
|
9 |
+
|
10 |
+
sys.path.append('.')
|
11 |
+
|
12 |
+
import os
|
13 |
+
import math
|
14 |
+
import yaml
|
15 |
+
import glob
|
16 |
+
import json
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
from copy import deepcopy
|
20 |
+
import cv2
|
21 |
+
import random
|
22 |
+
from PIL import Image
|
23 |
+
from collections import defaultdict
|
24 |
+
|
25 |
+
import torch
|
26 |
+
from torch.autograd import Variable
|
27 |
+
from torch.utils import data
|
28 |
+
from torchvision import transforms as T
|
29 |
+
|
30 |
+
import albumentations as A
|
31 |
+
|
32 |
+
from .albu import IsotropicResize
|
33 |
+
|
34 |
+
FFpp_pool=['FaceForensics++','FaceShifter','DeepFakeDetection','FF-DF','FF-F2F','FF-FS','FF-NT']#
|
35 |
+
|
36 |
+
def all_in_pool(inputs,pool):
|
37 |
+
for each in inputs:
|
38 |
+
if each not in pool:
|
39 |
+
return False
|
40 |
+
return True
|
41 |
+
|
42 |
+
|
43 |
+
class DeepfakeAbstractBaseDataset(data.Dataset):
|
44 |
+
"""
|
45 |
+
Abstract base class for all deepfake datasets.
|
46 |
+
"""
|
47 |
+
def __init__(self, config=None, mode='train'):
|
48 |
+
"""Initializes the dataset object.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
config (dict): A dictionary containing configuration parameters.
|
52 |
+
mode (str): A string indicating the mode (train or test).
|
53 |
+
|
54 |
+
Raises:
|
55 |
+
NotImplementedError: If mode is not train or test.
|
56 |
+
"""
|
57 |
+
|
58 |
+
# Set the configuration and mode
|
59 |
+
self.config = config
|
60 |
+
self.mode = mode
|
61 |
+
self.compression = config['compression']
|
62 |
+
self.frame_num = config['frame_num'][mode]
|
63 |
+
|
64 |
+
# Check if 'video_mode' exists in config, otherwise set video_level to False
|
65 |
+
self.video_level = config.get('video_mode', False)
|
66 |
+
self.clip_size = config.get('clip_size', None)
|
67 |
+
self.lmdb = config.get('lmdb', False)
|
68 |
+
# Dataset dictionary
|
69 |
+
self.image_list = []
|
70 |
+
self.label_list = []
|
71 |
+
|
72 |
+
# Set the dataset dictionary based on the mode
|
73 |
+
if mode == 'train':
|
74 |
+
dataset_list = config['train_dataset']
|
75 |
+
# Training data should be collected together for training
|
76 |
+
image_list, label_list = [], []
|
77 |
+
for one_data in dataset_list:
|
78 |
+
tmp_image, tmp_label, tmp_name = self.collect_img_and_label_for_one_dataset(one_data)
|
79 |
+
image_list.extend(tmp_image)
|
80 |
+
label_list.extend(tmp_label)
|
81 |
+
if self.lmdb:
|
82 |
+
if len(dataset_list)>1:
|
83 |
+
if all_in_pool(dataset_list,FFpp_pool):
|
84 |
+
lmdb_path = os.path.join(config['lmdb_dir'], f"FaceForensics++_lmdb")
|
85 |
+
self.env = lmdb.open(lmdb_path, create=False, subdir=True, readonly=True, lock=False)
|
86 |
+
else:
|
87 |
+
raise ValueError('Training with multiple dataset and lmdb is not implemented yet.')
|
88 |
+
else:
|
89 |
+
lmdb_path = os.path.join(config['lmdb_dir'], f"{dataset_list[0] if dataset_list[0] not in FFpp_pool else 'FaceForensics++'}_lmdb")
|
90 |
+
self.env = lmdb.open(lmdb_path, create=False, subdir=True, readonly=True, lock=False)
|
91 |
+
elif mode == 'test':
|
92 |
+
one_data = config['test_dataset']
|
93 |
+
# Test dataset should be evaluated separately. So collect only one dataset each time
|
94 |
+
image_list, label_list, name_list = self.collect_img_and_label_for_one_dataset(one_data)
|
95 |
+
if self.lmdb:
|
96 |
+
lmdb_path = os.path.join(config['lmdb_dir'], f"{one_data}_lmdb" if one_data not in FFpp_pool else 'FaceForensics++_lmdb')
|
97 |
+
self.env = lmdb.open(lmdb_path, create=False, subdir=True, readonly=True, lock=False)
|
98 |
+
else:
|
99 |
+
raise NotImplementedError('Only train and test modes are supported.')
|
100 |
+
|
101 |
+
assert len(image_list)!=0 and len(label_list)!=0, f"Collect nothing for {mode} mode!"
|
102 |
+
self.image_list, self.label_list = image_list, label_list
|
103 |
+
|
104 |
+
|
105 |
+
# Create a dictionary containing the image and label lists
|
106 |
+
self.data_dict = {
|
107 |
+
'image': self.image_list,
|
108 |
+
'label': self.label_list,
|
109 |
+
}
|
110 |
+
|
111 |
+
self.transform = self.init_data_aug_method()
|
112 |
+
|
113 |
+
def init_data_aug_method(self):
|
114 |
+
trans = A.Compose([
|
115 |
+
A.HorizontalFlip(p=self.config['data_aug']['flip_prob']),
|
116 |
+
A.Rotate(limit=self.config['data_aug']['rotate_limit'], p=self.config['data_aug']['rotate_prob']),
|
117 |
+
A.GaussianBlur(blur_limit=self.config['data_aug']['blur_limit'], p=self.config['data_aug']['blur_prob']),
|
118 |
+
A.OneOf([
|
119 |
+
IsotropicResize(max_side=self.config['resolution'], interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC),
|
120 |
+
IsotropicResize(max_side=self.config['resolution'], interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_LINEAR),
|
121 |
+
IsotropicResize(max_side=self.config['resolution'], interpolation_down=cv2.INTER_LINEAR, interpolation_up=cv2.INTER_LINEAR),
|
122 |
+
], p = 0 if self.config['with_landmark'] else 1),
|
123 |
+
A.OneOf([
|
124 |
+
A.RandomBrightnessContrast(brightness_limit=self.config['data_aug']['brightness_limit'], contrast_limit=self.config['data_aug']['contrast_limit']),
|
125 |
+
A.FancyPCA(),
|
126 |
+
A.HueSaturationValue()
|
127 |
+
], p=0.5),
|
128 |
+
A.ImageCompression(quality_lower=self.config['data_aug']['quality_lower'], quality_upper=self.config['data_aug']['quality_upper'], p=0.5)
|
129 |
+
],
|
130 |
+
keypoint_params=A.KeypointParams(format='xy') if self.config['with_landmark'] else None
|
131 |
+
)
|
132 |
+
return trans
|
133 |
+
|
134 |
+
def rescale_landmarks(self, landmarks, original_size=256, new_size=224):
|
135 |
+
scale_factor = new_size / original_size
|
136 |
+
rescaled_landmarks = landmarks * scale_factor
|
137 |
+
return rescaled_landmarks
|
138 |
+
|
139 |
+
|
140 |
+
def collect_img_and_label_for_one_dataset(self, dataset_name: str):
|
141 |
+
"""Collects image and label lists.
|
142 |
+
|
143 |
+
Args:
|
144 |
+
dataset_name (str): A list containing one dataset information. e.g., 'FF-F2F'
|
145 |
+
|
146 |
+
Returns:
|
147 |
+
list: A list of image paths.
|
148 |
+
list: A list of labels.
|
149 |
+
|
150 |
+
Raises:
|
151 |
+
ValueError: If image paths or labels are not found.
|
152 |
+
NotImplementedError: If the dataset is not implemented yet.
|
153 |
+
"""
|
154 |
+
# Initialize the label and frame path lists
|
155 |
+
label_list = []
|
156 |
+
frame_path_list = []
|
157 |
+
|
158 |
+
# Record video name for video-level metrics
|
159 |
+
video_name_list = []
|
160 |
+
|
161 |
+
# Try to get the dataset information from the JSON file
|
162 |
+
if not os.path.exists(self.config['dataset_json_folder']):
|
163 |
+
self.config['dataset_json_folder'] = self.config['dataset_json_folder'].replace('/Youtu_Pangu_Security_Public', '/Youtu_Pangu_Security/public')
|
164 |
+
try:
|
165 |
+
with open(os.path.join(self.config['dataset_json_folder'], dataset_name + '.json'), 'r') as f:
|
166 |
+
dataset_info = json.load(f)
|
167 |
+
except Exception as e:
|
168 |
+
print(e)
|
169 |
+
raise ValueError(f'dataset {dataset_name} not exist!')
|
170 |
+
|
171 |
+
# If JSON file exists, do the following data collection
|
172 |
+
# FIXME: ugly, need to be modified here.
|
173 |
+
cp = None
|
174 |
+
if dataset_name == 'FaceForensics++_c40':
|
175 |
+
dataset_name = 'FaceForensics++'
|
176 |
+
cp = 'c40'
|
177 |
+
elif dataset_name == 'FF-DF_c40':
|
178 |
+
dataset_name = 'FF-DF'
|
179 |
+
cp = 'c40'
|
180 |
+
elif dataset_name == 'FF-F2F_c40':
|
181 |
+
dataset_name = 'FF-F2F'
|
182 |
+
cp = 'c40'
|
183 |
+
elif dataset_name == 'FF-FS_c40':
|
184 |
+
dataset_name = 'FF-FS'
|
185 |
+
cp = 'c40'
|
186 |
+
elif dataset_name == 'FF-NT_c40':
|
187 |
+
dataset_name = 'FF-NT'
|
188 |
+
cp = 'c40'
|
189 |
+
# Get the information for the current dataset
|
190 |
+
for label in dataset_info[dataset_name]:
|
191 |
+
sub_dataset_info = dataset_info[dataset_name][label][self.mode]
|
192 |
+
# Special case for FaceForensics++ and DeepFakeDetection, choose the compression type
|
193 |
+
if cp == None and dataset_name in ['FF-DF', 'FF-F2F', 'FF-FS', 'FF-NT', 'FaceForensics++','DeepFakeDetection','FaceShifter']:
|
194 |
+
sub_dataset_info = sub_dataset_info[self.compression]
|
195 |
+
elif cp == 'c40' and dataset_name in ['FF-DF', 'FF-F2F', 'FF-FS', 'FF-NT', 'FaceForensics++','DeepFakeDetection','FaceShifter']:
|
196 |
+
sub_dataset_info = sub_dataset_info['c40']
|
197 |
+
|
198 |
+
# Iterate over the videos in the dataset
|
199 |
+
for video_name, video_info in sub_dataset_info.items():
|
200 |
+
# Unique video name
|
201 |
+
unique_video_name = video_info['label'] + '_' + video_name
|
202 |
+
|
203 |
+
# Get the label and frame paths for the current video
|
204 |
+
if video_info['label'] not in self.config['label_dict']:
|
205 |
+
raise ValueError(f'Label {video_info["label"]} is not found in the configuration file.')
|
206 |
+
label = self.config['label_dict'][video_info['label']]
|
207 |
+
frame_paths = video_info['frames']
|
208 |
+
# sorted video path to the lists
|
209 |
+
if '\\' in frame_paths[0]:
|
210 |
+
frame_paths = sorted(frame_paths, key=lambda x: int(x.split('\\')[-1].split('.')[0]))
|
211 |
+
else:
|
212 |
+
frame_paths = sorted(frame_paths, key=lambda x: int(x.split('/')[-1].split('.')[0]))
|
213 |
+
|
214 |
+
# Consider the case when the actual number of frames (e.g., 270) is larger than the specified (i.e., self.frame_num=32)
|
215 |
+
# In this case, we select self.frame_num frames from the original 270 frames
|
216 |
+
total_frames = len(frame_paths)
|
217 |
+
if self.frame_num < total_frames:
|
218 |
+
total_frames = self.frame_num
|
219 |
+
if self.video_level:
|
220 |
+
# Select clip_size continuous frames
|
221 |
+
start_frame = random.randint(0, total_frames - self.frame_num) if self.mode == 'train' else 0
|
222 |
+
frame_paths = frame_paths[start_frame:start_frame + self.frame_num] # update total_frames
|
223 |
+
else:
|
224 |
+
# Select self.frame_num frames evenly distributed throughout the video
|
225 |
+
step = total_frames // self.frame_num
|
226 |
+
frame_paths = [frame_paths[i] for i in range(0, total_frames, step)][:self.frame_num]
|
227 |
+
|
228 |
+
# If video-level methods, crop clips from the selected frames if needed
|
229 |
+
if self.video_level:
|
230 |
+
if self.clip_size is None:
|
231 |
+
raise ValueError('clip_size must be specified when video_level is True.')
|
232 |
+
# Check if the number of total frames is greater than or equal to clip_size
|
233 |
+
if total_frames >= self.clip_size:
|
234 |
+
# Initialize an empty list to store the selected continuous frames
|
235 |
+
selected_clips = []
|
236 |
+
|
237 |
+
# Calculate the number of clips to select
|
238 |
+
num_clips = total_frames // self.clip_size
|
239 |
+
|
240 |
+
if num_clips > 1:
|
241 |
+
# Calculate the step size between each clip
|
242 |
+
clip_step = (total_frames - self.clip_size) // (num_clips - 1)
|
243 |
+
|
244 |
+
# Select clip_size continuous frames from each part of the video
|
245 |
+
for i in range(num_clips):
|
246 |
+
# Ensure start_frame + self.clip_size - 1 does not exceed the index of the last frame
|
247 |
+
start_frame = random.randrange(i * clip_step, min((i + 1) * clip_step, total_frames - self.clip_size + 1)) if self.mode == 'train' else i * clip_step
|
248 |
+
continuous_frames = frame_paths[start_frame:start_frame + self.clip_size]
|
249 |
+
assert len(continuous_frames) == self.clip_size, 'clip_size is not equal to the length of frame_path_list'
|
250 |
+
selected_clips.append(continuous_frames)
|
251 |
+
|
252 |
+
else:
|
253 |
+
start_frame = random.randrange(0, total_frames - self.clip_size + 1) if self.mode == 'train' else 0
|
254 |
+
continuous_frames = frame_paths[start_frame:start_frame + self.clip_size]
|
255 |
+
assert len(continuous_frames)==self.clip_size, 'clip_size is not equal to the length of frame_path_list'
|
256 |
+
selected_clips.append(continuous_frames)
|
257 |
+
|
258 |
+
# Append the list of selected clips and append the label
|
259 |
+
label_list.extend([label] * len(selected_clips))
|
260 |
+
frame_path_list.extend(selected_clips)
|
261 |
+
# video name save
|
262 |
+
video_name_list.extend([unique_video_name] * len(selected_clips))
|
263 |
+
|
264 |
+
else:
|
265 |
+
print(f"Skipping video {unique_video_name} because it has less than clip_size ({self.clip_size}) frames ({total_frames}).")
|
266 |
+
|
267 |
+
# Otherwise, extend the label and frame paths to the lists according to the number of frames
|
268 |
+
else:
|
269 |
+
# Extend the label and frame paths to the lists according to the number of frames
|
270 |
+
label_list.extend([label] * total_frames)
|
271 |
+
frame_path_list.extend(frame_paths)
|
272 |
+
# video name save
|
273 |
+
video_name_list.extend([unique_video_name] * len(frame_paths))
|
274 |
+
|
275 |
+
# Shuffle the label and frame path lists in the same order
|
276 |
+
shuffled = list(zip(label_list, frame_path_list, video_name_list))
|
277 |
+
random.shuffle(shuffled)
|
278 |
+
label_list, frame_path_list, video_name_list = zip(*shuffled)
|
279 |
+
|
280 |
+
return frame_path_list, label_list, video_name_list
|
281 |
+
|
282 |
+
|
283 |
+
def load_rgb(self, file_path):
|
284 |
+
"""
|
285 |
+
Load an RGB image from a file path and resize it to a specified resolution.
|
286 |
+
|
287 |
+
Args:
|
288 |
+
file_path: A string indicating the path to the image file.
|
289 |
+
|
290 |
+
Returns:
|
291 |
+
An Image object containing the loaded and resized image.
|
292 |
+
|
293 |
+
Raises:
|
294 |
+
ValueError: If the loaded image is None.
|
295 |
+
"""
|
296 |
+
size = self.config['resolution'] # if self.mode == "train" else self.config['resolution']
|
297 |
+
if not self.lmdb:
|
298 |
+
if not file_path[0] == '.':
|
299 |
+
file_path = f'{self.config["rgb_dir"]}'+file_path
|
300 |
+
assert os.path.exists(file_path), f"{file_path} does not exist"
|
301 |
+
img = cv2.imread(file_path)
|
302 |
+
if img is None:
|
303 |
+
raise ValueError('Loaded image is None: {}'.format(file_path))
|
304 |
+
elif self.lmdb:
|
305 |
+
with self.env.begin(write=False) as txn:
|
306 |
+
# transfer the path format from rgb-path to lmdb-key
|
307 |
+
if file_path[0]=='.':
|
308 |
+
file_path=file_path.replace('./datasets\\','')
|
309 |
+
|
310 |
+
image_bin = txn.get(file_path.encode())
|
311 |
+
image_buf = np.frombuffer(image_bin, dtype=np.uint8)
|
312 |
+
img = cv2.imdecode(image_buf, cv2.IMREAD_COLOR)
|
313 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
314 |
+
img = cv2.resize(img, (size, size), interpolation=cv2.INTER_CUBIC)
|
315 |
+
return Image.fromarray(np.array(img, dtype=np.uint8))
|
316 |
+
|
317 |
+
|
318 |
+
def load_mask(self, file_path):
|
319 |
+
"""
|
320 |
+
Load a binary mask image from a file path and resize it to a specified resolution.
|
321 |
+
|
322 |
+
Args:
|
323 |
+
file_path: A string indicating the path to the mask file.
|
324 |
+
|
325 |
+
Returns:
|
326 |
+
A numpy array containing the loaded and resized mask.
|
327 |
+
|
328 |
+
Raises:
|
329 |
+
None.
|
330 |
+
"""
|
331 |
+
size = self.config['resolution']
|
332 |
+
if file_path is None:
|
333 |
+
return np.zeros((size, size, 1))
|
334 |
+
if not self.lmdb:
|
335 |
+
if not file_path[0] == '.':
|
336 |
+
file_path = f'./{self.config["rgb_dir"]}\\'+file_path
|
337 |
+
if os.path.exists(file_path):
|
338 |
+
mask = cv2.imread(file_path, 0)
|
339 |
+
if mask is None:
|
340 |
+
mask = np.zeros((size, size))
|
341 |
+
else:
|
342 |
+
return np.zeros((size, size, 1))
|
343 |
+
else:
|
344 |
+
with self.env.begin(write=False) as txn:
|
345 |
+
# transfer the path format from rgb-path to lmdb-key
|
346 |
+
if file_path[0]=='.':
|
347 |
+
file_path=file_path.replace('./datasets\\','')
|
348 |
+
|
349 |
+
image_bin = txn.get(file_path.encode())
|
350 |
+
if image_bin is None:
|
351 |
+
mask = np.zeros((size, size,3))
|
352 |
+
else:
|
353 |
+
image_buf = np.frombuffer(image_bin, dtype=np.uint8)
|
354 |
+
# cv2.IMREAD_GRAYSCALE为灰度图,cv2.IMREAD_COLOR为彩色图
|
355 |
+
mask = cv2.imdecode(image_buf, cv2.IMREAD_COLOR)
|
356 |
+
mask = cv2.resize(mask, (size, size)) / 255
|
357 |
+
mask = np.expand_dims(mask, axis=2)
|
358 |
+
return np.float32(mask)
|
359 |
+
|
360 |
+
def load_landmark(self, file_path):
|
361 |
+
"""
|
362 |
+
Load 2D facial landmarks from a file path.
|
363 |
+
|
364 |
+
Args:
|
365 |
+
file_path: A string indicating the path to the landmark file.
|
366 |
+
|
367 |
+
Returns:
|
368 |
+
A numpy array containing the loaded landmarks.
|
369 |
+
|
370 |
+
Raises:
|
371 |
+
None.
|
372 |
+
"""
|
373 |
+
if file_path is None:
|
374 |
+
return np.zeros((81, 2))
|
375 |
+
if not self.lmdb:
|
376 |
+
if not file_path[0] == '.':
|
377 |
+
file_path = f'./{self.config["rgb_dir"]}\\'+file_path
|
378 |
+
if os.path.exists(file_path):
|
379 |
+
landmark = np.load(file_path)
|
380 |
+
else:
|
381 |
+
return np.zeros((81, 2))
|
382 |
+
else:
|
383 |
+
with self.env.begin(write=False) as txn:
|
384 |
+
# transfer the path format from rgb-path to lmdb-key
|
385 |
+
if file_path[0]=='.':
|
386 |
+
file_path=file_path.replace('./datasets\\','')
|
387 |
+
binary = txn.get(file_path.encode())
|
388 |
+
landmark = np.frombuffer(binary, dtype=np.uint32).reshape((81, 2))
|
389 |
+
landmark=self.rescale_landmarks(np.float32(landmark), original_size=256, new_size=self.config['resolution'])
|
390 |
+
return landmark
|
391 |
+
|
392 |
+
def to_tensor(self, img):
|
393 |
+
"""
|
394 |
+
Convert an image to a PyTorch tensor.
|
395 |
+
"""
|
396 |
+
return T.ToTensor()(img)
|
397 |
+
|
398 |
+
def normalize(self, img):
|
399 |
+
"""
|
400 |
+
Normalize an image.
|
401 |
+
"""
|
402 |
+
mean = self.config['mean']
|
403 |
+
std = self.config['std']
|
404 |
+
normalize = T.Normalize(mean=mean, std=std)
|
405 |
+
return normalize(img)
|
406 |
+
|
407 |
+
def data_aug(self, img, landmark=None, mask=None, augmentation_seed=None):
|
408 |
+
"""
|
409 |
+
Apply data augmentation to an image, landmark, and mask.
|
410 |
+
|
411 |
+
Args:
|
412 |
+
img: An Image object containing the image to be augmented.
|
413 |
+
landmark: A numpy array containing the 2D facial landmarks to be augmented.
|
414 |
+
mask: A numpy array containing the binary mask to be augmented.
|
415 |
+
|
416 |
+
Returns:
|
417 |
+
The augmented image, landmark, and mask.
|
418 |
+
"""
|
419 |
+
|
420 |
+
# Set the seed for the random number generator
|
421 |
+
if augmentation_seed is not None:
|
422 |
+
random.seed(augmentation_seed)
|
423 |
+
np.random.seed(augmentation_seed)
|
424 |
+
|
425 |
+
# Create a dictionary of arguments
|
426 |
+
kwargs = {'image': img}
|
427 |
+
|
428 |
+
# Check if the landmark and mask are not None
|
429 |
+
if landmark is not None:
|
430 |
+
kwargs['keypoints'] = landmark
|
431 |
+
kwargs['keypoint_params'] = A.KeypointParams(format='xy')
|
432 |
+
if mask is not None:
|
433 |
+
mask = mask.squeeze(2)
|
434 |
+
if mask.max() > 0:
|
435 |
+
kwargs['mask'] = mask
|
436 |
+
|
437 |
+
# Apply data augmentation
|
438 |
+
transformed = self.transform(**kwargs)
|
439 |
+
|
440 |
+
# Get the augmented image, landmark, and mask
|
441 |
+
augmented_img = transformed['image']
|
442 |
+
augmented_landmark = transformed.get('keypoints')
|
443 |
+
augmented_mask = transformed.get('mask',mask)
|
444 |
+
|
445 |
+
# Convert the augmented landmark to a numpy array
|
446 |
+
if augmented_landmark is not None:
|
447 |
+
augmented_landmark = np.array(augmented_landmark)
|
448 |
+
|
449 |
+
# Reset the seeds to ensure different transformations for different videos
|
450 |
+
if augmentation_seed is not None:
|
451 |
+
random.seed()
|
452 |
+
np.random.seed()
|
453 |
+
|
454 |
+
return augmented_img, augmented_landmark, augmented_mask
|
455 |
+
|
456 |
+
def __getitem__(self, index, no_norm=False):
|
457 |
+
"""
|
458 |
+
Returns the data point at the given index.
|
459 |
+
|
460 |
+
Args:
|
461 |
+
index (int): The index of the data point.
|
462 |
+
|
463 |
+
Returns:
|
464 |
+
A tuple containing the image tensor, the label tensor, the landmark tensor,
|
465 |
+
and the mask tensor.
|
466 |
+
"""
|
467 |
+
# Get the image paths and label
|
468 |
+
image_paths = self.data_dict['image'][index]
|
469 |
+
label = self.data_dict['label'][index]
|
470 |
+
|
471 |
+
if not isinstance(image_paths, list):
|
472 |
+
image_paths = [image_paths] # for the image-level IO, only one frame is used
|
473 |
+
|
474 |
+
image_tensors = []
|
475 |
+
landmark_tensors = []
|
476 |
+
mask_tensors = []
|
477 |
+
augmentation_seed = None
|
478 |
+
|
479 |
+
for image_path in image_paths:
|
480 |
+
# Initialize a new seed for data augmentation at the start of each video
|
481 |
+
if self.video_level and image_path == image_paths[0]:
|
482 |
+
augmentation_seed = random.randint(0, 2**32 - 1)
|
483 |
+
|
484 |
+
# Get the mask and landmark paths
|
485 |
+
mask_path = image_path.replace('frames', 'masks') # Use .png for mask
|
486 |
+
landmark_path = image_path.replace('frames', 'landmarks').replace('.png', '.npy') # Use .npy for landmark
|
487 |
+
|
488 |
+
# Load the image
|
489 |
+
try:
|
490 |
+
image = self.load_rgb(image_path)
|
491 |
+
except Exception as e:
|
492 |
+
# Skip this image and return the first one
|
493 |
+
print(f"Error loading image at index {index}: {e}")
|
494 |
+
return self.__getitem__(0)
|
495 |
+
image = np.array(image) # Convert to numpy array for data augmentation
|
496 |
+
|
497 |
+
# Load mask and landmark (if needed)
|
498 |
+
if self.config['with_mask']:
|
499 |
+
mask = self.load_mask(mask_path)
|
500 |
+
else:
|
501 |
+
mask = None
|
502 |
+
if self.config['with_landmark']:
|
503 |
+
landmarks = self.load_landmark(landmark_path)
|
504 |
+
else:
|
505 |
+
landmarks = None
|
506 |
+
|
507 |
+
# Do Data Augmentation
|
508 |
+
if self.mode == 'train' and self.config['use_data_augmentation']:
|
509 |
+
image_trans, landmarks_trans, mask_trans = self.data_aug(image, landmarks, mask, augmentation_seed)
|
510 |
+
else:
|
511 |
+
image_trans, landmarks_trans, mask_trans = deepcopy(image), deepcopy(landmarks), deepcopy(mask)
|
512 |
+
|
513 |
+
|
514 |
+
# To tensor and normalize
|
515 |
+
if not no_norm:
|
516 |
+
image_trans = self.normalize(self.to_tensor(image_trans))
|
517 |
+
if self.config['with_landmark']:
|
518 |
+
landmarks_trans = torch.from_numpy(landmarks)
|
519 |
+
if self.config['with_mask']:
|
520 |
+
mask_trans = torch.from_numpy(mask_trans)
|
521 |
+
|
522 |
+
image_tensors.append(image_trans)
|
523 |
+
landmark_tensors.append(landmarks_trans)
|
524 |
+
mask_tensors.append(mask_trans)
|
525 |
+
|
526 |
+
if self.video_level:
|
527 |
+
# Stack image tensors along a new dimension (time)
|
528 |
+
image_tensors = torch.stack(image_tensors, dim=0)
|
529 |
+
# Stack landmark and mask tensors along a new dimension (time)
|
530 |
+
if not any(landmark is None or (isinstance(landmark, list) and None in landmark) for landmark in landmark_tensors):
|
531 |
+
landmark_tensors = torch.stack(landmark_tensors, dim=0)
|
532 |
+
if not any(m is None or (isinstance(m, list) and None in m) for m in mask_tensors):
|
533 |
+
mask_tensors = torch.stack(mask_tensors, dim=0)
|
534 |
+
else:
|
535 |
+
# Get the first image tensor
|
536 |
+
image_tensors = image_tensors[0]
|
537 |
+
# Get the first landmark and mask tensors
|
538 |
+
if not any(landmark is None or (isinstance(landmark, list) and None in landmark) for landmark in landmark_tensors):
|
539 |
+
landmark_tensors = landmark_tensors[0]
|
540 |
+
if not any(m is None or (isinstance(m, list) and None in m) for m in mask_tensors):
|
541 |
+
mask_tensors = mask_tensors[0]
|
542 |
+
|
543 |
+
return image_tensors, label, landmark_tensors, mask_tensors
|
544 |
+
|
545 |
+
@staticmethod
|
546 |
+
def collate_fn(batch):
|
547 |
+
"""
|
548 |
+
Collate a batch of data points.
|
549 |
+
|
550 |
+
Args:
|
551 |
+
batch (list): A list of tuples containing the image tensor, the label tensor,
|
552 |
+
the landmark tensor, and the mask tensor.
|
553 |
+
|
554 |
+
Returns:
|
555 |
+
A tuple containing the image tensor, the label tensor, the landmark tensor,
|
556 |
+
and the mask tensor.
|
557 |
+
"""
|
558 |
+
# Separate the image, label, landmark, and mask tensors
|
559 |
+
images, labels, landmarks, masks = zip(*batch)
|
560 |
+
|
561 |
+
# Stack the image, label, landmark, and mask tensors
|
562 |
+
images = torch.stack(images, dim=0)
|
563 |
+
labels = torch.LongTensor(labels)
|
564 |
+
|
565 |
+
# Special case for landmarks and masks if they are None
|
566 |
+
if not any(landmark is None or (isinstance(landmark, list) and None in landmark) for landmark in landmarks):
|
567 |
+
landmarks = torch.stack(landmarks, dim=0)
|
568 |
+
else:
|
569 |
+
landmarks = None
|
570 |
+
|
571 |
+
if not any(m is None or (isinstance(m, list) and None in m) for m in masks):
|
572 |
+
masks = torch.stack(masks, dim=0)
|
573 |
+
else:
|
574 |
+
masks = None
|
575 |
+
|
576 |
+
# Create a dictionary of the tensors
|
577 |
+
data_dict = {}
|
578 |
+
data_dict['image'] = images
|
579 |
+
data_dict['label'] = labels
|
580 |
+
data_dict['landmark'] = landmarks
|
581 |
+
data_dict['mask'] = masks
|
582 |
+
return data_dict
|
583 |
+
|
584 |
+
def __len__(self):
|
585 |
+
"""
|
586 |
+
Return the length of the dataset.
|
587 |
+
|
588 |
+
Args:
|
589 |
+
None.
|
590 |
+
|
591 |
+
Returns:
|
592 |
+
An integer indicating the length of the dataset.
|
593 |
+
|
594 |
+
Raises:
|
595 |
+
AssertionError: If the number of images and labels in the dataset are not equal.
|
596 |
+
"""
|
597 |
+
assert len(self.image_list) == len(self.label_list), 'Number of images and labels are not equal'
|
598 |
+
return len(self.image_list)
|
599 |
+
|
600 |
+
|
601 |
+
if __name__ == "__main__":
|
602 |
+
with open('/data/home/zhiyuanyan/DeepfakeBench/training/config/detector/video_baseline.yaml', 'r') as f:
|
603 |
+
config = yaml.safe_load(f)
|
604 |
+
train_set = DeepfakeAbstractBaseDataset(
|
605 |
+
config = config,
|
606 |
+
mode = 'train',
|
607 |
+
)
|
608 |
+
train_data_loader = \
|
609 |
+
torch.utils.data.DataLoader(
|
610 |
+
dataset=train_set,
|
611 |
+
batch_size=config['train_batchSize'],
|
612 |
+
shuffle=True,
|
613 |
+
num_workers=0,
|
614 |
+
collate_fn=train_set.collate_fn,
|
615 |
+
)
|
616 |
+
from tqdm import tqdm
|
617 |
+
for iteration, batch in enumerate(tqdm(train_data_loader)):
|
618 |
+
# print(iteration)
|
619 |
+
...
|
620 |
+
# if iteration > 10:
|
621 |
+
# break
|
training/dataset/albu.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from albumentations import DualTransform, ImageOnlyTransform
|
6 |
+
from albumentations.augmentations.crops.functional import crop
|
7 |
+
|
8 |
+
|
9 |
+
def isotropically_resize_image(img, size, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC):
|
10 |
+
h, w = img.shape[:2]
|
11 |
+
if max(w, h) == size:
|
12 |
+
return img
|
13 |
+
if w > h:
|
14 |
+
scale = size / w
|
15 |
+
h = h * scale
|
16 |
+
w = size
|
17 |
+
else:
|
18 |
+
scale = size / h
|
19 |
+
w = w * scale
|
20 |
+
h = size
|
21 |
+
interpolation = interpolation_up if scale > 1 else interpolation_down
|
22 |
+
resized = cv2.resize(img, (int(w), int(h)), interpolation=interpolation)
|
23 |
+
return resized
|
24 |
+
|
25 |
+
|
26 |
+
class IsotropicResize(DualTransform):
|
27 |
+
def __init__(self, max_side, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC,
|
28 |
+
always_apply=False, p=1):
|
29 |
+
super(IsotropicResize, self).__init__(always_apply, p)
|
30 |
+
self.max_side = max_side
|
31 |
+
self.interpolation_down = interpolation_down
|
32 |
+
self.interpolation_up = interpolation_up
|
33 |
+
|
34 |
+
def apply(self, img, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC, **params):
|
35 |
+
return isotropically_resize_image(img, size=self.max_side, interpolation_down=interpolation_down,
|
36 |
+
interpolation_up=interpolation_up)
|
37 |
+
|
38 |
+
def apply_to_mask(self, img, **params):
|
39 |
+
return self.apply(img, interpolation_down=cv2.INTER_NEAREST, interpolation_up=cv2.INTER_NEAREST, **params)
|
40 |
+
|
41 |
+
def get_transform_init_args_names(self):
|
42 |
+
return ("max_side", "interpolation_down", "interpolation_up")
|
43 |
+
|
44 |
+
|
45 |
+
class Resize4xAndBack(ImageOnlyTransform):
|
46 |
+
def __init__(self, always_apply=False, p=0.5):
|
47 |
+
super(Resize4xAndBack, self).__init__(always_apply, p)
|
48 |
+
|
49 |
+
def apply(self, img, **params):
|
50 |
+
h, w = img.shape[:2]
|
51 |
+
scale = random.choice([2, 4])
|
52 |
+
img = cv2.resize(img, (w // scale, h // scale), interpolation=cv2.INTER_AREA)
|
53 |
+
img = cv2.resize(img, (w, h),
|
54 |
+
interpolation=random.choice([cv2.INTER_CUBIC, cv2.INTER_LINEAR, cv2.INTER_NEAREST]))
|
55 |
+
return img
|
56 |
+
|
57 |
+
|
58 |
+
class RandomSizedCropNonEmptyMaskIfExists(DualTransform):
|
59 |
+
|
60 |
+
def __init__(self, min_max_height, w2h_ratio=[0.7, 1.3], always_apply=False, p=0.5):
|
61 |
+
super(RandomSizedCropNonEmptyMaskIfExists, self).__init__(always_apply, p)
|
62 |
+
|
63 |
+
self.min_max_height = min_max_height
|
64 |
+
self.w2h_ratio = w2h_ratio
|
65 |
+
|
66 |
+
def apply(self, img, x_min=0, x_max=0, y_min=0, y_max=0, **params):
|
67 |
+
cropped = crop(img, x_min, y_min, x_max, y_max)
|
68 |
+
return cropped
|
69 |
+
|
70 |
+
@property
|
71 |
+
def targets_as_params(self):
|
72 |
+
return ["mask"]
|
73 |
+
|
74 |
+
def get_params_dependent_on_targets(self, params):
|
75 |
+
mask = params["mask"]
|
76 |
+
mask_height, mask_width = mask.shape[:2]
|
77 |
+
crop_height = int(mask_height * random.uniform(self.min_max_height[0], self.min_max_height[1]))
|
78 |
+
w2h_ratio = random.uniform(*self.w2h_ratio)
|
79 |
+
crop_width = min(int(crop_height * w2h_ratio), mask_width - 1)
|
80 |
+
if mask.sum() == 0:
|
81 |
+
x_min = random.randint(0, mask_width - crop_width + 1)
|
82 |
+
y_min = random.randint(0, mask_height - crop_height + 1)
|
83 |
+
else:
|
84 |
+
mask = mask.sum(axis=-1) if mask.ndim == 3 else mask
|
85 |
+
non_zero_yx = np.argwhere(mask)
|
86 |
+
y, x = random.choice(non_zero_yx)
|
87 |
+
x_min = x - random.randint(0, crop_width - 1)
|
88 |
+
y_min = y - random.randint(0, crop_height - 1)
|
89 |
+
x_min = np.clip(x_min, 0, mask_width - crop_width)
|
90 |
+
y_min = np.clip(y_min, 0, mask_height - crop_height)
|
91 |
+
|
92 |
+
x_max = x_min + crop_height
|
93 |
+
y_max = y_min + crop_width
|
94 |
+
y_max = min(mask_height, y_max)
|
95 |
+
x_max = min(mask_width, x_max)
|
96 |
+
return {"x_min": x_min, "x_max": x_max, "y_min": y_min, "y_max": y_max}
|
97 |
+
|
98 |
+
def get_transform_init_args_names(self):
|
99 |
+
return "min_max_height", "height", "width", "w2h_ratio"
|
training/dataset/face_utils.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from skimage import transform as trans
|
4 |
+
# from mtcnn.mtcnn import MTCNN
|
5 |
+
|
6 |
+
|
7 |
+
def get_keypts(face):
|
8 |
+
# get key points from the results of mtcnn
|
9 |
+
|
10 |
+
if len(face['keypoints']) == 0:
|
11 |
+
return []
|
12 |
+
|
13 |
+
leye = np.array(face['keypoints']['left_eye'], dtype=np.int).reshape(-1, 2)
|
14 |
+
reye = np.array(face['keypoints']['right_eye'],
|
15 |
+
dtype=np.int).reshape(-1, 2)
|
16 |
+
nose = np.array(face['keypoints']['nose'], dtype=np.int).reshape(-1, 2)
|
17 |
+
lmouth = np.array(face['keypoints']['mouth_left'],
|
18 |
+
dtype=np.int).reshape(-1, 2)
|
19 |
+
rmouth = np.array(face['keypoints']['mouth_right'],
|
20 |
+
dtype=np.int).reshape(-1, 2)
|
21 |
+
|
22 |
+
pts = np.concatenate([leye, reye, nose, lmouth, rmouth], axis=0)
|
23 |
+
|
24 |
+
return pts
|
25 |
+
|
26 |
+
|
27 |
+
def img_align_crop(img, landmark=None, outsize=None, scale=1.3, mask=None):
|
28 |
+
""" align and crop the face according to the given bbox and landmarks
|
29 |
+
landmark: 5 key points
|
30 |
+
"""
|
31 |
+
|
32 |
+
M = None
|
33 |
+
|
34 |
+
target_size = [112, 112]
|
35 |
+
|
36 |
+
dst = np.array([
|
37 |
+
[30.2946, 51.6963],
|
38 |
+
[65.5318, 51.5014],
|
39 |
+
[48.0252, 71.7366],
|
40 |
+
[33.5493, 92.3655],
|
41 |
+
[62.7299, 92.2041]], dtype=np.float32)
|
42 |
+
|
43 |
+
if target_size[1] == 112:
|
44 |
+
dst[:, 0] += 8.0
|
45 |
+
|
46 |
+
dst[:, 0] = dst[:, 0] * outsize[0] / target_size[0]
|
47 |
+
dst[:, 1] = dst[:, 1] * outsize[1] / target_size[1]
|
48 |
+
|
49 |
+
target_size = outsize
|
50 |
+
|
51 |
+
margin_rate = scale - 1
|
52 |
+
x_margin = target_size[0] * margin_rate / 2.
|
53 |
+
y_margin = target_size[1] * margin_rate / 2.
|
54 |
+
|
55 |
+
# move
|
56 |
+
dst[:, 0] += x_margin
|
57 |
+
dst[:, 1] += y_margin
|
58 |
+
|
59 |
+
# resize
|
60 |
+
dst[:, 0] *= target_size[0] / (target_size[0] + 2 * x_margin)
|
61 |
+
dst[:, 1] *= target_size[1] / (target_size[1] + 2 * y_margin)
|
62 |
+
|
63 |
+
src = landmark.astype(np.float32)
|
64 |
+
|
65 |
+
# use skimage tranformation
|
66 |
+
tform = trans.SimilarityTransform()
|
67 |
+
tform.estimate(src, dst)
|
68 |
+
M = tform.params[0:2, :]
|
69 |
+
|
70 |
+
# M: use opencv
|
71 |
+
# M = cv2.getAffineTransform(src[[0,1,2],:],dst[[0,1,2],:])
|
72 |
+
|
73 |
+
img = cv2.warpAffine(img, M, (target_size[1], target_size[0]))
|
74 |
+
|
75 |
+
if outsize is not None:
|
76 |
+
img = cv2.resize(img, (outsize[1], outsize[0]))
|
77 |
+
|
78 |
+
if mask is not None:
|
79 |
+
mask = cv2.warpAffine(mask, M, (target_size[1], target_size[0]))
|
80 |
+
mask = cv2.resize(mask, (outsize[1], outsize[0]))
|
81 |
+
return img, mask
|
82 |
+
else:
|
83 |
+
return img
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
def expand_bbox(bbox, width, height, scale=1.3, minsize=None):
|
90 |
+
"""
|
91 |
+
Expand original boundingbox by scale.
|
92 |
+
:param bbx: original boundingbox
|
93 |
+
:param width: frame width
|
94 |
+
:param height: frame height
|
95 |
+
:param scale: bounding box size multiplier to get a bigger face region
|
96 |
+
:param minsize: set minimum bounding box size
|
97 |
+
:return: expanded bbox
|
98 |
+
"""
|
99 |
+
x, y, w, h = bbox
|
100 |
+
|
101 |
+
# box center
|
102 |
+
cx = int(x + w / 2)
|
103 |
+
cy = int(y + h / 2)
|
104 |
+
|
105 |
+
# expand by scale factor
|
106 |
+
new_size = max(int(w * scale), int(h * scale))
|
107 |
+
new_x = max(0, int(cx - new_size / 2))
|
108 |
+
new_y = max(0, int(cy - new_size / 2))
|
109 |
+
|
110 |
+
# Check for too big bbox for given x, y
|
111 |
+
new_size = min(width - new_x, new_size)
|
112 |
+
new_size = min(height - new_size, new_size)
|
113 |
+
|
114 |
+
return new_x, new_y, new_size, new_size
|
115 |
+
|
116 |
+
|
117 |
+
def extract_face_MTCNN(face_detector, image, expand_scale=1.3, res=256):
|
118 |
+
# Image size
|
119 |
+
height, width = image.shape[:2]
|
120 |
+
|
121 |
+
# Convert to rgb
|
122 |
+
rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
123 |
+
|
124 |
+
# Detect with dlib
|
125 |
+
faces = face_detector.detect_faces(rgb)
|
126 |
+
if len(faces):
|
127 |
+
# For now only take biggest face
|
128 |
+
face = None
|
129 |
+
bbox = None
|
130 |
+
max_region = 0
|
131 |
+
for ff in faces:
|
132 |
+
if max_region == 0:
|
133 |
+
face = ff
|
134 |
+
bbox = face['box']
|
135 |
+
max_region = bbox[2]*bbox[3]
|
136 |
+
else:
|
137 |
+
bb = ff['box']
|
138 |
+
region = bb[2]*bb[3]
|
139 |
+
if region > max_rigion:
|
140 |
+
max_rigion = region
|
141 |
+
face = ff
|
142 |
+
bbox = face['box']
|
143 |
+
print(max_region)
|
144 |
+
#face = faces[0]
|
145 |
+
|
146 |
+
#bbox = face['box']
|
147 |
+
|
148 |
+
# --- Prediction ---------------------------------------------------
|
149 |
+
# Face crop with MTCNN and bounding box scale enlargement
|
150 |
+
x, y, w, h = expand_bbox(bbox, width, height, scale=expand_scale)
|
151 |
+
cropped_face = rgb[y:y+h, x:x+w]
|
152 |
+
|
153 |
+
cropped_face = cv2.resize(
|
154 |
+
cropped_face, (res, res), interpolation=cv2.INTER_CUBIC)
|
155 |
+
cropped_face = cv2.cvtColor(cropped_face, cv2.COLOR_RGB2BGR)
|
156 |
+
return cropped_face
|
157 |
+
|
158 |
+
return None
|
159 |
+
|
160 |
+
|
161 |
+
def extract_aligned_face_MTCNN(face_detector, image, expand_scale=1.3, res=256, mask=None):
|
162 |
+
# Image size
|
163 |
+
height, width = image.shape[:2]
|
164 |
+
|
165 |
+
# Convert to rgb
|
166 |
+
rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
167 |
+
|
168 |
+
# Detect with dlib
|
169 |
+
faces = face_detector.detect_faces(rgb)
|
170 |
+
if len(faces):
|
171 |
+
# For now only take biggest face
|
172 |
+
face = None
|
173 |
+
bbox = None
|
174 |
+
max_region = 0
|
175 |
+
for i, ff in enumerate(faces):
|
176 |
+
if max_region == 0:
|
177 |
+
face = ff
|
178 |
+
bbox = face['box']
|
179 |
+
max_region = bbox[2]*bbox[3]
|
180 |
+
else:
|
181 |
+
bb = ff['box']
|
182 |
+
region = bb[2]*bb[3]
|
183 |
+
if region > max_region:
|
184 |
+
max_region = region
|
185 |
+
face = ff
|
186 |
+
bbox = face['box']
|
187 |
+
#print('face {}: {}'.format(i, max_region))
|
188 |
+
#face = faces[0]
|
189 |
+
|
190 |
+
landmarks = get_keypts(face)
|
191 |
+
|
192 |
+
# --- Prediction ---------------------------------------------------
|
193 |
+
# Face aligned crop with MTCNN and bounding box scale enlargement
|
194 |
+
if mask is not None:
|
195 |
+
cropped_face, cropped_mask = img_align_crop(rgb, landmarks, outsize=[
|
196 |
+
res, res], scale=expand_scale, mask=mask)
|
197 |
+
cropped_face = cv2.cvtColor(cropped_face, cv2.COLOR_RGB2BGR)
|
198 |
+
cropped_mask = cv2.cvtColor(cropped_mask, cv2.COLOR_RGB2GRAY)
|
199 |
+
return cropped_face, cropped_mask
|
200 |
+
else:
|
201 |
+
cropped_face = img_align_crop(rgb, landmarks, outsize=[
|
202 |
+
res, res], scale=expand_scale)
|
203 |
+
cropped_face = cv2.cvtColor(cropped_face, cv2.COLOR_RGB2BGR)
|
204 |
+
return cropped_face
|
205 |
+
|
206 |
+
return None
|
207 |
+
|
208 |
+
|
209 |
+
def extract_face_DLIB(face_detector, image, expand_scale=1.3, res=256):
|
210 |
+
# Image size
|
211 |
+
height, width = image.shape[:2]
|
212 |
+
|
213 |
+
# Convert to gray
|
214 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
215 |
+
|
216 |
+
# Detect with dlib
|
217 |
+
faces = face_detector(gray, 1)
|
218 |
+
if len(faces):
|
219 |
+
# For now only take biggest face
|
220 |
+
face = faces[0]
|
221 |
+
|
222 |
+
x1 = face.left()
|
223 |
+
y1 = face.top()
|
224 |
+
x2 = face.right()
|
225 |
+
y2 = face.bottom()
|
226 |
+
bbox = (x1, y1, x2-x1, y2-y1)
|
227 |
+
|
228 |
+
# --- Prediction ---------------------------------------------------
|
229 |
+
# Face crop with dlib and bounding box scale enlargement
|
230 |
+
x, y, w, h = expand_bbox(bbox, width, height, scale=expand_scale)
|
231 |
+
cropped_face = image[y:y+h, x:x+w]
|
232 |
+
|
233 |
+
cropped_face = cv2.resize(
|
234 |
+
cropped_face, (res, res), interpolation=cv2.INTER_CUBIC)
|
235 |
+
|
236 |
+
return cropped_face
|
237 |
+
|
238 |
+
return None
|
training/dataset/ff_blend.py
ADDED
@@ -0,0 +1,572 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
# author: Zhiyuan Yan
|
3 |
+
# email: [email protected]
|
4 |
+
# date: 2023-03-30
|
5 |
+
|
6 |
+
The code is designed for Face X-ray.
|
7 |
+
'''
|
8 |
+
|
9 |
+
import os
|
10 |
+
import sys
|
11 |
+
import json
|
12 |
+
import pickle
|
13 |
+
import time
|
14 |
+
|
15 |
+
import lmdb
|
16 |
+
import numpy as np
|
17 |
+
import albumentations as A
|
18 |
+
import cv2
|
19 |
+
import random
|
20 |
+
from PIL import Image
|
21 |
+
from skimage.util import random_noise
|
22 |
+
from scipy import linalg
|
23 |
+
import heapq as hq
|
24 |
+
import lmdb
|
25 |
+
import torch
|
26 |
+
from torch.autograd import Variable
|
27 |
+
from torch.utils import data
|
28 |
+
from torchvision import transforms as T
|
29 |
+
import torchvision
|
30 |
+
|
31 |
+
from dataset.utils.face_blend import *
|
32 |
+
from dataset.utils.face_align import get_align_mat_new
|
33 |
+
from dataset.utils.color_transfer import color_transfer
|
34 |
+
from dataset.utils.faceswap_utils import blendImages as alpha_blend_fea
|
35 |
+
from dataset.utils.faceswap_utils import AlphaBlend as alpha_blend
|
36 |
+
from dataset.utils.face_aug import aug_one_im, change_res
|
37 |
+
from dataset.utils.image_ae import get_pretraiend_ae
|
38 |
+
from dataset.utils.warp import warp_mask
|
39 |
+
from dataset.utils import faceswap
|
40 |
+
from scipy.ndimage.filters import gaussian_filter
|
41 |
+
|
42 |
+
|
43 |
+
class RandomDownScale(A.core.transforms_interface.ImageOnlyTransform):
|
44 |
+
def apply(self,img,**params):
|
45 |
+
return self.randomdownscale(img)
|
46 |
+
|
47 |
+
def randomdownscale(self,img):
|
48 |
+
keep_ratio=True
|
49 |
+
keep_input_shape=True
|
50 |
+
H,W,C=img.shape
|
51 |
+
ratio_list=[2,4]
|
52 |
+
r=ratio_list[np.random.randint(len(ratio_list))]
|
53 |
+
img_ds=cv2.resize(img,(int(W/r),int(H/r)),interpolation=cv2.INTER_NEAREST)
|
54 |
+
if keep_input_shape:
|
55 |
+
img_ds=cv2.resize(img_ds,(W,H),interpolation=cv2.INTER_LINEAR)
|
56 |
+
return img_ds
|
57 |
+
|
58 |
+
|
59 |
+
class FFBlendDataset(data.Dataset):
|
60 |
+
def __init__(self, config=None):
|
61 |
+
|
62 |
+
self.lmdb = config.get('lmdb', False)
|
63 |
+
if self.lmdb:
|
64 |
+
lmdb_path = os.path.join(config['lmdb_dir'], f"FaceForensics++_lmdb")
|
65 |
+
self.env = lmdb.open(lmdb_path, create=False, subdir=True, readonly=True, lock=False)
|
66 |
+
|
67 |
+
# Check if the dictionary has already been created
|
68 |
+
if os.path.exists('training/lib/nearest_face_info.pkl'):
|
69 |
+
with open('training/lib/nearest_face_info.pkl', 'rb') as f:
|
70 |
+
face_info = pickle.load(f)
|
71 |
+
else:
|
72 |
+
raise ValueError(f"Need to run the dataset/generate_xray_nearest.py before training the face xray.")
|
73 |
+
self.face_info = face_info
|
74 |
+
# Check if the dictionary has already been created
|
75 |
+
if os.path.exists('training/lib/landmark_dict_ffall.pkl'):
|
76 |
+
with open('training/lib/landmark_dict_ffall.pkl', 'rb') as f:
|
77 |
+
landmark_dict = pickle.load(f)
|
78 |
+
self.landmark_dict = landmark_dict
|
79 |
+
self.imid_list = self.get_training_imglist()
|
80 |
+
self.transforms = T.Compose([
|
81 |
+
# T.GaussianBlur(kernel_size=3, sigma=(0.1, 2.0)),
|
82 |
+
# T.ColorJitter(hue=.05, saturation=.05),
|
83 |
+
# T.RandomHorizontalFlip(),
|
84 |
+
# T.RandomRotation(20, resample=Image.BILINEAR),
|
85 |
+
T.ToTensor(),
|
86 |
+
T.Normalize(mean=[0.5, 0.5, 0.5],
|
87 |
+
std=[0.5, 0.5, 0.5])
|
88 |
+
])
|
89 |
+
self.data_dict = {
|
90 |
+
'imid_list': self.imid_list
|
91 |
+
}
|
92 |
+
self.config=config
|
93 |
+
# def data_aug(self, im):
|
94 |
+
# """
|
95 |
+
# Apply data augmentation on the input image.
|
96 |
+
# """
|
97 |
+
# transform = T.Compose([
|
98 |
+
# T.ToPILImage(),
|
99 |
+
# T.GaussianBlur(kernel_size=3, sigma=(0.1, 2.0)),
|
100 |
+
# T.ColorJitter(hue=.05, saturation=.05),
|
101 |
+
# ])
|
102 |
+
# # Apply transformations
|
103 |
+
# im_aug = transform(im)
|
104 |
+
# return im_aug
|
105 |
+
|
106 |
+
def blended_aug(self, im):
|
107 |
+
transform = A.Compose([
|
108 |
+
A.RGBShift((-20,20),(-20,20),(-20,20),p=0.3),
|
109 |
+
A.HueSaturationValue(hue_shift_limit=(-0.3,0.3), sat_shift_limit=(-0.3,0.3), val_shift_limit=(-0.3,0.3), p=0.3),
|
110 |
+
A.RandomBrightnessContrast(brightness_limit=(-0.3,0.3), contrast_limit=(-0.3,0.3), p=0.3),
|
111 |
+
A.ImageCompression(quality_lower=40, quality_upper=100,p=0.5)
|
112 |
+
])
|
113 |
+
# Apply transformations
|
114 |
+
im_aug = transform(image=im)
|
115 |
+
return im_aug['image']
|
116 |
+
|
117 |
+
|
118 |
+
def data_aug(self, im):
|
119 |
+
"""
|
120 |
+
Apply data augmentation on the input image using albumentations.
|
121 |
+
"""
|
122 |
+
transform = A.Compose([
|
123 |
+
A.Compose([
|
124 |
+
A.RGBShift((-20,20),(-20,20),(-20,20),p=0.3),
|
125 |
+
A.HueSaturationValue(hue_shift_limit=(-0.3,0.3), sat_shift_limit=(-0.3,0.3), val_shift_limit=(-0.3,0.3), p=1),
|
126 |
+
A.RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1,0.1), p=1),
|
127 |
+
],p=1),
|
128 |
+
A.OneOf([
|
129 |
+
RandomDownScale(p=1),
|
130 |
+
A.Sharpen(alpha=(0.2, 0.5), lightness=(0.5, 1.0), p=1),
|
131 |
+
],p=1),
|
132 |
+
], p=1.)
|
133 |
+
# Apply transformations
|
134 |
+
im_aug = transform(image=im)
|
135 |
+
return im_aug['image']
|
136 |
+
|
137 |
+
|
138 |
+
def get_training_imglist(self):
|
139 |
+
"""
|
140 |
+
Get the list of training images.
|
141 |
+
"""
|
142 |
+
random.seed(1024) # Fix the random seed for reproducibility
|
143 |
+
imid_list = list(self.landmark_dict.keys())
|
144 |
+
# imid_list = [imid.replace('landmarks', 'frames').replace('npy', 'png') for imid in imid_list]
|
145 |
+
random.shuffle(imid_list)
|
146 |
+
return imid_list
|
147 |
+
|
148 |
+
def load_rgb(self, file_path):
|
149 |
+
"""
|
150 |
+
Load an RGB image from a file path and resize it to a specified resolution.
|
151 |
+
|
152 |
+
Args:
|
153 |
+
file_path: A string indicating the path to the image file.
|
154 |
+
|
155 |
+
Returns:
|
156 |
+
An Image object containing the loaded and resized image.
|
157 |
+
|
158 |
+
Raises:
|
159 |
+
ValueError: If the loaded image is None.
|
160 |
+
"""
|
161 |
+
size = self.config['resolution'] # if self.mode == "train" else self.config['resolution']
|
162 |
+
if not self.lmdb:
|
163 |
+
if not file_path[0] == '.':
|
164 |
+
file_path = f'./{self.config["rgb_dir"]}\\'+file_path
|
165 |
+
assert os.path.exists(file_path), f"{file_path} does not exist"
|
166 |
+
img = cv2.imread(file_path)
|
167 |
+
if img is None:
|
168 |
+
raise ValueError('Loaded image is None: {}'.format(file_path))
|
169 |
+
elif self.lmdb:
|
170 |
+
with self.env.begin(write=False) as txn:
|
171 |
+
# transfer the path format from rgb-path to lmdb-key
|
172 |
+
if file_path[0]=='.':
|
173 |
+
file_path=file_path.replace('./datasets\\','')
|
174 |
+
|
175 |
+
image_bin = txn.get(file_path.encode())
|
176 |
+
image_buf = np.frombuffer(image_bin, dtype=np.uint8)
|
177 |
+
img = cv2.imdecode(image_buf, cv2.IMREAD_COLOR)
|
178 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
179 |
+
img = cv2.resize(img, (size, size), interpolation=cv2.INTER_CUBIC)
|
180 |
+
return np.array(img, dtype=np.uint8)
|
181 |
+
|
182 |
+
|
183 |
+
def load_mask(self, file_path):
|
184 |
+
"""
|
185 |
+
Load a binary mask image from a file path and resize it to a specified resolution.
|
186 |
+
|
187 |
+
Args:
|
188 |
+
file_path: A string indicating the path to the mask file.
|
189 |
+
|
190 |
+
Returns:
|
191 |
+
A numpy array containing the loaded and resized mask.
|
192 |
+
|
193 |
+
Raises:
|
194 |
+
None.
|
195 |
+
"""
|
196 |
+
size = self.config['resolution']
|
197 |
+
if file_path is None:
|
198 |
+
if not file_path[0] == '.':
|
199 |
+
file_path = f'./{self.config["rgb_dir"]}\\'+file_path
|
200 |
+
return np.zeros((size, size, 1))
|
201 |
+
if not self.lmdb:
|
202 |
+
if os.path.exists(file_path):
|
203 |
+
mask = cv2.imread(file_path, 0)
|
204 |
+
if mask is None:
|
205 |
+
mask = np.zeros((size, size))
|
206 |
+
else:
|
207 |
+
return np.zeros((size, size, 1))
|
208 |
+
else:
|
209 |
+
with self.env.begin(write=False) as txn:
|
210 |
+
# transfer the path format from rgb-path to lmdb-key
|
211 |
+
if file_path[0]=='.':
|
212 |
+
file_path=file_path.replace('./datasets\\','')
|
213 |
+
image_bin = txn.get(file_path.encode())
|
214 |
+
image_buf = np.frombuffer(image_bin, dtype=np.uint8)
|
215 |
+
# cv2.IMREAD_GRAYSCALE为灰度图,cv2.IMREAD_COLOR为彩色图
|
216 |
+
mask = cv2.imdecode(image_buf, cv2.IMREAD_COLOR)
|
217 |
+
mask = cv2.resize(mask, (size, size)) / 255
|
218 |
+
mask = np.expand_dims(mask, axis=2)
|
219 |
+
return np.float32(mask)
|
220 |
+
|
221 |
+
def load_landmark(self, file_path):
|
222 |
+
"""
|
223 |
+
Load 2D facial landmarks from a file path.
|
224 |
+
|
225 |
+
Args:
|
226 |
+
file_path: A string indicating the path to the landmark file.
|
227 |
+
|
228 |
+
Returns:
|
229 |
+
A numpy array containing the loaded landmarks.
|
230 |
+
|
231 |
+
Raises:
|
232 |
+
None.
|
233 |
+
"""
|
234 |
+
if file_path is None:
|
235 |
+
return np.zeros((81, 2))
|
236 |
+
if not self.lmdb:
|
237 |
+
if not file_path[0] == '.':
|
238 |
+
file_path = f'./{self.config["rgb_dir"]}\\'+file_path
|
239 |
+
if os.path.exists(file_path):
|
240 |
+
landmark = np.load(file_path)
|
241 |
+
else:
|
242 |
+
return np.zeros((81, 2))
|
243 |
+
else:
|
244 |
+
with self.env.begin(write=False) as txn:
|
245 |
+
# transfer the path format from rgb-path to lmdb-key
|
246 |
+
if file_path[0]=='.':
|
247 |
+
file_path=file_path.replace('./datasets\\','')
|
248 |
+
binary = txn.get(file_path.encode())
|
249 |
+
landmark = np.frombuffer(binary, dtype=np.uint32).reshape((81, 2))
|
250 |
+
return np.float32(landmark)
|
251 |
+
|
252 |
+
def preprocess_images(self, imid_fg, imid_bg):
|
253 |
+
"""
|
254 |
+
Load foreground and background images and face shapes.
|
255 |
+
"""
|
256 |
+
fg_im = self.load_rgb(imid_fg.replace('landmarks', 'frames').replace('npy', 'png'))
|
257 |
+
fg_im = np.array(self.data_aug(fg_im))
|
258 |
+
fg_shape = self.landmark_dict[imid_fg]
|
259 |
+
fg_shape = np.array(fg_shape, dtype=np.int32)
|
260 |
+
|
261 |
+
bg_im = self.load_rgb(imid_bg.replace('landmarks', 'frames').replace('npy', 'png'))
|
262 |
+
bg_im = np.array(self.data_aug(bg_im))
|
263 |
+
bg_shape = self.landmark_dict[imid_bg]
|
264 |
+
bg_shape = np.array(bg_shape, dtype=np.int32)
|
265 |
+
|
266 |
+
if fg_im is None:
|
267 |
+
return bg_im, bg_shape, bg_im, bg_shape
|
268 |
+
elif bg_im is None:
|
269 |
+
return fg_im, fg_shape, fg_im, fg_shape
|
270 |
+
|
271 |
+
return fg_im, fg_shape, bg_im, bg_shape
|
272 |
+
|
273 |
+
|
274 |
+
def get_fg_bg(self, one_lmk_path):
|
275 |
+
"""
|
276 |
+
Get foreground and background paths
|
277 |
+
"""
|
278 |
+
bg_lmk_path = one_lmk_path
|
279 |
+
# Randomly pick one from the nearest neighbors for the foreground
|
280 |
+
if bg_lmk_path in self.face_info:
|
281 |
+
fg_lmk_path = random.choice(self.face_info[bg_lmk_path])
|
282 |
+
else:
|
283 |
+
fg_lmk_path = bg_lmk_path
|
284 |
+
|
285 |
+
return fg_lmk_path, bg_lmk_path
|
286 |
+
|
287 |
+
|
288 |
+
def generate_masks(self, fg_im, fg_shape, bg_im, bg_shape):
|
289 |
+
"""
|
290 |
+
Generate masks for foreground and background images.
|
291 |
+
"""
|
292 |
+
fg_mask = get_mask(fg_shape, fg_im, deform=False)
|
293 |
+
bg_mask = get_mask(bg_shape, bg_im, deform=True)
|
294 |
+
|
295 |
+
# # Only do the postprocess for the background mask
|
296 |
+
bg_mask_postprocess = warp_mask(bg_mask, std=20)
|
297 |
+
return fg_mask, bg_mask_postprocess
|
298 |
+
|
299 |
+
|
300 |
+
def warp_images(self, fg_im, fg_shape, bg_im, bg_shape, fg_mask):
|
301 |
+
"""
|
302 |
+
Warp foreground face onto background image using affine or 3D warping.
|
303 |
+
"""
|
304 |
+
H, W, C = bg_im.shape
|
305 |
+
use_3d_warp = np.random.rand() < 0.5
|
306 |
+
|
307 |
+
if not use_3d_warp:
|
308 |
+
aff_param = np.array(get_align_mat_new(fg_shape, bg_shape)).reshape(2, 3)
|
309 |
+
warped_face = cv2.warpAffine(fg_im, aff_param, (W, H), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REFLECT)
|
310 |
+
fg_mask = cv2.warpAffine(fg_mask, aff_param, (W, H), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REFLECT)
|
311 |
+
fg_mask = fg_mask > 0
|
312 |
+
else:
|
313 |
+
warped_face = faceswap.warp_image_3d(fg_im, np.array(fg_shape[:48]), np.array(bg_shape[:48]), (H, W))
|
314 |
+
fg_mask = np.mean(warped_face, axis=2) > 0
|
315 |
+
|
316 |
+
return warped_face, fg_mask
|
317 |
+
|
318 |
+
|
319 |
+
def colorTransfer(self, src, dst, mask):
|
320 |
+
transferredDst = np.copy(dst)
|
321 |
+
maskIndices = np.where(mask != 0)
|
322 |
+
maskedSrc = src[maskIndices[0], maskIndices[1]].astype(np.float32)
|
323 |
+
maskedDst = dst[maskIndices[0], maskIndices[1]].astype(np.float32)
|
324 |
+
|
325 |
+
# Compute means and standard deviations
|
326 |
+
meanSrc = np.mean(maskedSrc, axis=0)
|
327 |
+
stdSrc = np.std(maskedSrc, axis=0)
|
328 |
+
meanDst = np.mean(maskedDst, axis=0)
|
329 |
+
stdDst = np.std(maskedDst, axis=0)
|
330 |
+
|
331 |
+
# Perform color transfer
|
332 |
+
maskedDst = (maskedDst - meanDst) * (stdSrc / stdDst) + meanSrc
|
333 |
+
maskedDst = np.clip(maskedDst, 0, 255)
|
334 |
+
|
335 |
+
# Copy the entire background into transferredDst
|
336 |
+
transferredDst = np.copy(dst)
|
337 |
+
# Now apply color transfer only to the masked region
|
338 |
+
transferredDst[maskIndices[0], maskIndices[1]] = maskedDst.astype(np.uint8)
|
339 |
+
|
340 |
+
return transferredDst
|
341 |
+
|
342 |
+
|
343 |
+
def blend_images(self, color_corrected_fg, bg_im, bg_mask, featherAmount=0.2):
|
344 |
+
"""
|
345 |
+
Blend foreground and background images together.
|
346 |
+
"""
|
347 |
+
# normalize the mask to have values between 0 and 1
|
348 |
+
b_mask = bg_mask / 255.
|
349 |
+
|
350 |
+
# Add an extra dimension and repeat the mask to match the number of channels in color_corrected_fg and bg_im
|
351 |
+
b_mask = np.repeat(b_mask[:, :, np.newaxis], 3, axis=2)
|
352 |
+
|
353 |
+
# Compute the alpha blending
|
354 |
+
maskIndices = np.where(b_mask != 0)
|
355 |
+
maskPts = np.hstack((maskIndices[1][:, np.newaxis], maskIndices[0][:, np.newaxis]))
|
356 |
+
|
357 |
+
# FIXME: deal with the bugs of empty maskpts
|
358 |
+
if maskPts.size == 0:
|
359 |
+
print(f"No non-zero values found in bg_mask for blending. Skipping this image.")
|
360 |
+
return color_corrected_fg # or handle this situation differently according to the needs
|
361 |
+
|
362 |
+
faceSize = np.max(maskPts, axis=0) - np.min(maskPts, axis=0)
|
363 |
+
featherAmount = featherAmount * np.max(faceSize)
|
364 |
+
|
365 |
+
hull = cv2.convexHull(maskPts)
|
366 |
+
dists = np.zeros(maskPts.shape[0])
|
367 |
+
for i in range(maskPts.shape[0]):
|
368 |
+
dists[i] = cv2.pointPolygonTest(hull, (int(maskPts[i, 0]), int(maskPts[i, 1])), True)
|
369 |
+
|
370 |
+
weights = np.clip(dists / featherAmount, 0, 1)
|
371 |
+
|
372 |
+
# Perform the blending operation
|
373 |
+
color_corrected_fg = color_corrected_fg.astype(float)
|
374 |
+
bg_im = bg_im.astype(float)
|
375 |
+
blended_image = np.copy(bg_im)
|
376 |
+
blended_image[maskIndices[0], maskIndices[1]] = weights[:, np.newaxis] * color_corrected_fg[maskIndices[0], maskIndices[1]] + (1 - weights[:, np.newaxis]) * bg_im[maskIndices[0], maskIndices[1]]
|
377 |
+
|
378 |
+
# Convert the blended image to 8-bit unsigned integers
|
379 |
+
blended_image = np.clip(blended_image, 0, 255)
|
380 |
+
blended_image = blended_image.astype(np.uint8)
|
381 |
+
return blended_image
|
382 |
+
|
383 |
+
|
384 |
+
def process_images(self, imid_fg, imid_bg, index):
|
385 |
+
"""
|
386 |
+
Overview:
|
387 |
+
Process foreground and background images following the data generation pipeline (BI dataset).
|
388 |
+
|
389 |
+
Terminology:
|
390 |
+
Foreground (fg) image: The image containing the face that will be blended onto the background image.
|
391 |
+
Background (bg) image: The image onto which the face from the foreground image will be blended.
|
392 |
+
"""
|
393 |
+
fg_im, fg_shape, bg_im, bg_shape = self.preprocess_images(imid_fg, imid_bg)
|
394 |
+
fg_mask, bg_mask = self.generate_masks(fg_im, fg_shape, bg_im, bg_shape)
|
395 |
+
warped_face, fg_mask = self.warp_images(fg_im, fg_shape, bg_im, bg_shape, fg_mask)
|
396 |
+
|
397 |
+
try:
|
398 |
+
# add the below two lines to make sure the bg_mask is strictly within the fg_mask
|
399 |
+
bg_mask[fg_mask == 0] = 0
|
400 |
+
color_corrected_fg = self.colorTransfer(bg_im, warped_face, bg_mask)
|
401 |
+
blended_image = self.blend_images(color_corrected_fg, bg_im, bg_mask)
|
402 |
+
# FIXME: ugly, in order to fix the problem of mask (all zero values for bg_mask)
|
403 |
+
except:
|
404 |
+
color_corrected_fg = self.colorTransfer(bg_im, warped_face, bg_mask)
|
405 |
+
blended_image = self.blend_images(color_corrected_fg, bg_im, bg_mask)
|
406 |
+
boundary = get_boundary(bg_mask)
|
407 |
+
|
408 |
+
# # Prepare images and titles for the combined image
|
409 |
+
# images = [fg_im, np.where(fg_mask>0, 255, 0), bg_im, bg_mask, color_corrected_fg, blended_image, np.where(boundary>0, 255, 0)]
|
410 |
+
# titles = ["Fg Image", "Fg Mask", "Bg Image",
|
411 |
+
# "Bg Mask", "Blended Region",
|
412 |
+
# "Blended Image", "Boundary"]
|
413 |
+
|
414 |
+
# # Save the combined image
|
415 |
+
# os.makedirs('facexray_examples_3', exist_ok=True)
|
416 |
+
# self.save_combined_image(images, titles, index, f'facexray_examples_3/combined_image_{index}.png')
|
417 |
+
return blended_image, boundary, bg_im
|
418 |
+
|
419 |
+
|
420 |
+
def post_proc(self, img):
|
421 |
+
'''
|
422 |
+
if self.mode == 'train':
|
423 |
+
#if np.random.rand() < 0.5:
|
424 |
+
# img = random_add_noise(img)
|
425 |
+
#add_gaussian_noise(img)
|
426 |
+
if np.random.rand() < 0.5:
|
427 |
+
#img, _ = change_res(img)
|
428 |
+
img = gaussian_blur(img)
|
429 |
+
'''
|
430 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
431 |
+
im_aug = self.blended_aug(img)
|
432 |
+
im_aug = Image.fromarray(np.uint8(img))
|
433 |
+
im_aug = self.transforms(im_aug)
|
434 |
+
return im_aug
|
435 |
+
|
436 |
+
|
437 |
+
@staticmethod
|
438 |
+
def save_combined_image(images, titles, index, save_path):
|
439 |
+
"""
|
440 |
+
Save the combined image with titles for each single image.
|
441 |
+
|
442 |
+
Args:
|
443 |
+
images (List[np.ndarray]): List of images to be combined.
|
444 |
+
titles (List[str]): List of titles for each image.
|
445 |
+
index (int): Index of the image.
|
446 |
+
save_path (str): Path to save the combined image.
|
447 |
+
"""
|
448 |
+
# Determine the maximum height and width among the images
|
449 |
+
max_height = max(image.shape[0] for image in images)
|
450 |
+
max_width = max(image.shape[1] for image in images)
|
451 |
+
|
452 |
+
# Create the canvas
|
453 |
+
canvas = np.zeros((max_height * len(images), max_width, 3), dtype=np.uint8)
|
454 |
+
|
455 |
+
# Place the images and titles on the canvas
|
456 |
+
current_height = 0
|
457 |
+
for image, title in zip(images, titles):
|
458 |
+
height, width = image.shape[:2]
|
459 |
+
|
460 |
+
# Check if image has a third dimension (color channels)
|
461 |
+
if image.ndim == 2:
|
462 |
+
# If not, add a third dimension
|
463 |
+
image = np.tile(image[..., None], (1, 1, 3))
|
464 |
+
|
465 |
+
canvas[current_height : current_height + height, :width] = image
|
466 |
+
cv2.putText(
|
467 |
+
canvas, title, (10, current_height + 30),
|
468 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2
|
469 |
+
)
|
470 |
+
current_height += height
|
471 |
+
|
472 |
+
# Save the combined image
|
473 |
+
cv2.imwrite(save_path, canvas)
|
474 |
+
|
475 |
+
|
476 |
+
def __getitem__(self, index):
|
477 |
+
"""
|
478 |
+
Get an item from the dataset by index.
|
479 |
+
"""
|
480 |
+
one_lmk_path = self.imid_list[index]
|
481 |
+
try:
|
482 |
+
label = 1 if one_lmk_path.split('/')[6]=='manipulated_sequences' else 0
|
483 |
+
except Exception as e:
|
484 |
+
label = 1 if one_lmk_path.split('\\')[6] == 'manipulated_sequences' else 0
|
485 |
+
imid_fg, imid_bg = self.get_fg_bg(one_lmk_path)
|
486 |
+
manipulate_img, boundary, imid_bg = self.process_images(imid_fg, imid_bg, index)
|
487 |
+
|
488 |
+
manipulate_img = self.post_proc(manipulate_img)
|
489 |
+
imid_bg = self.post_proc(imid_bg)
|
490 |
+
boundary = torch.from_numpy(boundary)
|
491 |
+
boundary = boundary.unsqueeze(2).permute(2, 0, 1)
|
492 |
+
|
493 |
+
# fake data
|
494 |
+
fake_data_tuple = (manipulate_img, boundary, 1)
|
495 |
+
# real data
|
496 |
+
real_data_tuple = (imid_bg, torch.zeros_like(boundary), label)
|
497 |
+
|
498 |
+
return fake_data_tuple, real_data_tuple
|
499 |
+
|
500 |
+
|
501 |
+
@staticmethod
|
502 |
+
def collate_fn(batch):
|
503 |
+
"""
|
504 |
+
Collates batches of data and shuffles the images.
|
505 |
+
"""
|
506 |
+
# Unzip the batch
|
507 |
+
fake_data, real_data = zip(*batch)
|
508 |
+
|
509 |
+
# Unzip the fake and real data
|
510 |
+
fake_images, fake_boundaries, fake_labels = zip(*fake_data)
|
511 |
+
real_images, real_boundaries, real_labels = zip(*real_data)
|
512 |
+
|
513 |
+
# Combine fake and real data
|
514 |
+
images = torch.stack(fake_images + real_images)
|
515 |
+
boundaries = torch.stack(fake_boundaries + real_boundaries)
|
516 |
+
labels = torch.tensor(fake_labels + real_labels)
|
517 |
+
|
518 |
+
# Combine images, boundaries, and labels into tuples
|
519 |
+
combined_data = list(zip(images, boundaries, labels))
|
520 |
+
|
521 |
+
# Shuffle the combined data
|
522 |
+
random.shuffle(combined_data)
|
523 |
+
|
524 |
+
# Unzip the shuffled data
|
525 |
+
images, boundaries, labels = zip(*combined_data)
|
526 |
+
|
527 |
+
# Create the data dictionary
|
528 |
+
data_dict = {
|
529 |
+
'image': torch.stack(images),
|
530 |
+
'label': torch.tensor(labels),
|
531 |
+
'mask': torch.stack(boundaries), # Assuming boundaries are your masks
|
532 |
+
'landmark': None # Add your landmark data if available
|
533 |
+
}
|
534 |
+
|
535 |
+
return data_dict
|
536 |
+
|
537 |
+
|
538 |
+
def __len__(self):
|
539 |
+
"""
|
540 |
+
Get the length of the dataset.
|
541 |
+
"""
|
542 |
+
return len(self.imid_list)
|
543 |
+
|
544 |
+
|
545 |
+
if __name__ == "__main__":
|
546 |
+
dataset = FFBlendDataset()
|
547 |
+
print('dataset lenth: ', len(dataset))
|
548 |
+
|
549 |
+
def tensor2bgr(im):
|
550 |
+
img = im.squeeze().cpu().numpy().transpose(1, 2, 0)
|
551 |
+
img = (img + 1)/2 * 255
|
552 |
+
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
553 |
+
return img
|
554 |
+
|
555 |
+
def tensor2gray(im):
|
556 |
+
img = im.squeeze().cpu().numpy()
|
557 |
+
img = img * 255
|
558 |
+
return img
|
559 |
+
|
560 |
+
for i, data_dict in enumerate(dataset):
|
561 |
+
if i > 20:
|
562 |
+
break
|
563 |
+
if label == 1:
|
564 |
+
if not use_mouth:
|
565 |
+
img, boudary = im
|
566 |
+
cv2.imwrite('{}_whole.png'.format(i), tensor2bgr(img))
|
567 |
+
cv2.imwrite('{}_boudnary.png'.format(i), tensor2gray(boudary))
|
568 |
+
else:
|
569 |
+
img, mouth, boudary = im
|
570 |
+
cv2.imwrite('{}_whole.png'.format(i), tensor2bgr(img))
|
571 |
+
cv2.imwrite('{}_mouth.png'.format(i), tensor2bgr(mouth))
|
572 |
+
cv2.imwrite('{}_boudnary.png'.format(i), tensor2gray(boudary))
|
training/dataset/fwa_blend.py
ADDED
@@ -0,0 +1,548 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
# author: Zhiyuan Yan
|
3 |
+
# email: [email protected]
|
4 |
+
# date: 2023-03-30
|
5 |
+
|
6 |
+
The code is designed for FWA and mainly modified from the below link:
|
7 |
+
https://github.com/yuezunli/DSP-FWA
|
8 |
+
'''
|
9 |
+
|
10 |
+
import os
|
11 |
+
import sys
|
12 |
+
import json
|
13 |
+
import pickle
|
14 |
+
import time
|
15 |
+
|
16 |
+
import dlib
|
17 |
+
import numpy as np
|
18 |
+
from copy import deepcopy
|
19 |
+
import cv2
|
20 |
+
import random
|
21 |
+
from PIL import Image
|
22 |
+
from skimage.util import random_noise
|
23 |
+
from skimage.draw import polygon
|
24 |
+
from scipy import linalg
|
25 |
+
import heapq as hq
|
26 |
+
import albumentations as A
|
27 |
+
|
28 |
+
import torch
|
29 |
+
from torch.autograd import Variable
|
30 |
+
from torch.utils import data
|
31 |
+
from torchvision import transforms as T
|
32 |
+
import torchvision
|
33 |
+
|
34 |
+
from dataset.utils.face_blend import *
|
35 |
+
from dataset.utils.face_align import get_align_mat_new
|
36 |
+
from dataset.utils.color_transfer import color_transfer
|
37 |
+
from dataset.utils.faceswap_utils import blendImages as alpha_blend_fea
|
38 |
+
from dataset.utils.faceswap_utils import AlphaBlend as alpha_blend
|
39 |
+
from dataset.utils.face_aug import aug_one_im, change_res
|
40 |
+
from dataset.utils.image_ae import get_pretraiend_ae
|
41 |
+
from dataset.utils.warp import warp_mask
|
42 |
+
from dataset.utils import faceswap
|
43 |
+
from scipy.ndimage.filters import gaussian_filter
|
44 |
+
from skimage.transform import AffineTransform, warp
|
45 |
+
|
46 |
+
from dataset.abstract_dataset import DeepfakeAbstractBaseDataset
|
47 |
+
|
48 |
+
|
49 |
+
# Define face detector and predictor models
|
50 |
+
face_detector = dlib.get_frontal_face_detector()
|
51 |
+
predictor_path = 'preprocessing/dlib_tools/shape_predictor_81_face_landmarks.dat'
|
52 |
+
face_predictor = dlib.shape_predictor(predictor_path)
|
53 |
+
|
54 |
+
|
55 |
+
mean_face_x = np.array([
|
56 |
+
0.000213256, 0.0752622, 0.18113, 0.29077, 0.393397, 0.586856, 0.689483, 0.799124,
|
57 |
+
0.904991, 0.98004, 0.490127, 0.490127, 0.490127, 0.490127, 0.36688, 0.426036,
|
58 |
+
0.490127, 0.554217, 0.613373, 0.121737, 0.187122, 0.265825, 0.334606, 0.260918,
|
59 |
+
0.182743, 0.645647, 0.714428, 0.793132, 0.858516, 0.79751, 0.719335, 0.254149,
|
60 |
+
0.340985, 0.428858, 0.490127, 0.551395, 0.639268, 0.726104, 0.642159, 0.556721,
|
61 |
+
0.490127, 0.423532, 0.338094, 0.290379, 0.428096, 0.490127, 0.552157, 0.689874,
|
62 |
+
0.553364, 0.490127, 0.42689])
|
63 |
+
|
64 |
+
mean_face_y = np.array([
|
65 |
+
0.106454, 0.038915, 0.0187482, 0.0344891, 0.0773906, 0.0773906, 0.0344891,
|
66 |
+
0.0187482, 0.038915, 0.106454, 0.203352, 0.307009, 0.409805, 0.515625, 0.587326,
|
67 |
+
0.609345, 0.628106, 0.609345, 0.587326, 0.216423, 0.178758, 0.179852, 0.231733,
|
68 |
+
0.245099, 0.244077, 0.231733, 0.179852, 0.178758, 0.216423, 0.244077, 0.245099,
|
69 |
+
0.780233, 0.745405, 0.727388, 0.742578, 0.727388, 0.745405, 0.780233, 0.864805,
|
70 |
+
0.902192, 0.909281, 0.902192, 0.864805, 0.784792, 0.778746, 0.785343, 0.778746,
|
71 |
+
0.784792, 0.824182, 0.831803, 0.824182])
|
72 |
+
|
73 |
+
landmarks_2D = np.stack([mean_face_x, mean_face_y], axis=1)
|
74 |
+
|
75 |
+
|
76 |
+
class RandomDownScale(A.core.transforms_interface.ImageOnlyTransform):
|
77 |
+
def apply(self,img,**params):
|
78 |
+
return self.randomdownscale(img)
|
79 |
+
|
80 |
+
def randomdownscale(self,img):
|
81 |
+
keep_ratio=True
|
82 |
+
keep_input_shape=True
|
83 |
+
H,W,C=img.shape
|
84 |
+
ratio_list=[2,4]
|
85 |
+
r=ratio_list[np.random.randint(len(ratio_list))]
|
86 |
+
img_ds=cv2.resize(img,(int(W/r),int(H/r)),interpolation=cv2.INTER_NEAREST)
|
87 |
+
if keep_input_shape:
|
88 |
+
img_ds=cv2.resize(img_ds,(W,H),interpolation=cv2.INTER_LINEAR)
|
89 |
+
return img_ds
|
90 |
+
|
91 |
+
|
92 |
+
def umeyama( src, dst, estimate_scale ):
|
93 |
+
"""Estimate N-D similarity transformation with or without scaling.
|
94 |
+
Parameters
|
95 |
+
----------
|
96 |
+
src : (M, N) array
|
97 |
+
Source coordinates.
|
98 |
+
dst : (M, N) array
|
99 |
+
Destination coordinates.
|
100 |
+
estimate_scale : bool
|
101 |
+
Whether to estimate scaling factor.
|
102 |
+
Returns
|
103 |
+
-------
|
104 |
+
T : (N + 1, N + 1)
|
105 |
+
The homogeneous similarity transformation matrix. The matrix contains
|
106 |
+
NaN values only if the problem is not well-conditioned.
|
107 |
+
References
|
108 |
+
----------
|
109 |
+
.. [1] "Least-squares estimation of transformation parameters between two
|
110 |
+
point patterns", Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573
|
111 |
+
"""
|
112 |
+
|
113 |
+
num = src.shape[0]
|
114 |
+
dim = src.shape[1]
|
115 |
+
|
116 |
+
# Compute mean of src and dst.
|
117 |
+
src_mean = src.mean(axis=0)
|
118 |
+
dst_mean = dst.mean(axis=0)
|
119 |
+
|
120 |
+
# Subtract mean from src and dst.
|
121 |
+
src_demean = src - src_mean
|
122 |
+
dst_demean = dst - dst_mean
|
123 |
+
|
124 |
+
# Eq. (38).
|
125 |
+
A = np.dot(dst_demean.T, src_demean) / num
|
126 |
+
|
127 |
+
# Eq. (39).
|
128 |
+
d = np.ones((dim,), dtype=np.double)
|
129 |
+
if np.linalg.det(A) < 0:
|
130 |
+
d[dim - 1] = -1
|
131 |
+
|
132 |
+
T = np.eye(dim + 1, dtype=np.double)
|
133 |
+
|
134 |
+
U, S, V = np.linalg.svd(A)
|
135 |
+
|
136 |
+
# Eq. (40) and (43).
|
137 |
+
rank = np.linalg.matrix_rank(A)
|
138 |
+
if rank == 0:
|
139 |
+
return np.nan * T
|
140 |
+
elif rank == dim - 1:
|
141 |
+
if np.linalg.det(U) * np.linalg.det(V) > 0:
|
142 |
+
T[:dim, :dim] = np.dot(U, V)
|
143 |
+
else:
|
144 |
+
s = d[dim - 1]
|
145 |
+
d[dim - 1] = -1
|
146 |
+
T[:dim, :dim] = np.dot(U, np.dot(np.diag(d), V))
|
147 |
+
d[dim - 1] = s
|
148 |
+
else:
|
149 |
+
T[:dim, :dim] = np.dot(U, np.dot(np.diag(d), V.T))
|
150 |
+
|
151 |
+
if estimate_scale:
|
152 |
+
# Eq. (41) and (42).
|
153 |
+
scale = 1.0 / src_demean.var(axis=0).sum() * np.dot(S, d)
|
154 |
+
else:
|
155 |
+
scale = 1.0
|
156 |
+
|
157 |
+
T[:dim, dim] = dst_mean - scale * np.dot(T[:dim, :dim], src_mean.T)
|
158 |
+
T[:dim, :dim] *= scale
|
159 |
+
|
160 |
+
return T
|
161 |
+
|
162 |
+
|
163 |
+
def shape_to_np(shape, dtype="int"):
|
164 |
+
# initialize the list of (x, y)-coordinates
|
165 |
+
coords = np.zeros((68, 2), dtype=dtype)
|
166 |
+
|
167 |
+
# loop over the 68 facial landmarks and convert them
|
168 |
+
# to a 2-tuple of (x, y)-coordinates
|
169 |
+
for i in range(0, 68):
|
170 |
+
coords[i] = (shape.part(i).x, shape.part(i).y)
|
171 |
+
|
172 |
+
# return the list of (x, y)-coordinates
|
173 |
+
return coords
|
174 |
+
|
175 |
+
|
176 |
+
from skimage.transform import AffineTransform, warp
|
177 |
+
|
178 |
+
def get_warped_face(face, landmarks, tform):
|
179 |
+
"""
|
180 |
+
Apply the given affine transformation to the face and landmarks.
|
181 |
+
|
182 |
+
Args:
|
183 |
+
face (np.ndarray): The face image to be transformed.
|
184 |
+
landmarks (np.ndarray): The facial landmarks to be transformed.
|
185 |
+
tform (AffineTransform): The transformation to apply.
|
186 |
+
|
187 |
+
Returns:
|
188 |
+
warped_face (np.ndarray): The transformed face image.
|
189 |
+
warped_landmarks (np.ndarray): The transformed facial landmarks.
|
190 |
+
"""
|
191 |
+
# Apply the transformation to the face
|
192 |
+
warped_face = warp(face, tform.inverse, output_shape=face.shape)
|
193 |
+
warped_face = (warped_face * 255).astype(np.uint8)
|
194 |
+
|
195 |
+
# Apply the transformation to the landmarks
|
196 |
+
warped_landmarks = tform.inverse(landmarks)
|
197 |
+
|
198 |
+
return warped_face, warped_landmarks
|
199 |
+
|
200 |
+
|
201 |
+
def warp_face_within_landmarks(face, landmarks, tform):
|
202 |
+
"""
|
203 |
+
Apply the given affine transformation to the face and landmarks,
|
204 |
+
and retain only the area within the landmarks.
|
205 |
+
|
206 |
+
Args:
|
207 |
+
face (np.ndarray): The face image to be transformed.
|
208 |
+
landmarks (np.ndarray): The facial landmarks to be transformed.
|
209 |
+
tform (AffineTransform): The transformation to apply.
|
210 |
+
|
211 |
+
Returns:
|
212 |
+
warped_face (np.ndarray): The transformed face image.
|
213 |
+
warped_landmarks (np.ndarray): The transformed facial landmarks.
|
214 |
+
"""
|
215 |
+
# Apply the transformation to the face
|
216 |
+
warped_face = warp(face, tform.inverse, output_shape=face.shape)
|
217 |
+
warped_face = (warped_face * 255).astype(np.uint8)
|
218 |
+
|
219 |
+
# Apply the transformation to the landmarks
|
220 |
+
warped_landmarks = np.linalg.inv(landmarks)
|
221 |
+
|
222 |
+
# Generate a mask based on the landmarks
|
223 |
+
rr, cc = polygon(warped_landmarks[:, 1], warped_landmarks[:, 0])
|
224 |
+
mask = np.zeros_like(warped_face, dtype=np.uint8)
|
225 |
+
mask[rr, cc] = 1
|
226 |
+
|
227 |
+
# Apply the mask to the face
|
228 |
+
warped_face *= mask
|
229 |
+
|
230 |
+
return warped_face, warped_landmarks
|
231 |
+
|
232 |
+
|
233 |
+
def get_2d_aligned_face(image, mat, size, padding=[0, 0]):
|
234 |
+
mat = mat * size
|
235 |
+
mat[0, 2] += padding[0]
|
236 |
+
mat[1, 2] += padding[1]
|
237 |
+
return cv2.warpAffine(image, mat, (size + 2 * padding[0], size + 2 * padding[1]))
|
238 |
+
|
239 |
+
|
240 |
+
def get_2d_aligned_landmarks(face_cache, aligned_face_size=256, padding=(0, 0)):
|
241 |
+
mat, points = face_cache
|
242 |
+
# Mapping landmarks to aligned face
|
243 |
+
pred_ = np.concatenate([points, np.ones((points.shape[0], 1))], axis=-1)
|
244 |
+
pred_ = np.transpose(pred_)
|
245 |
+
mat = mat * aligned_face_size
|
246 |
+
mat[0, 2] += padding[0]
|
247 |
+
mat[1, 2] += padding[1]
|
248 |
+
aligned_shape = np.dot(mat, pred_)
|
249 |
+
aligned_shape = np.transpose(aligned_shape[:2, :])
|
250 |
+
return aligned_shape
|
251 |
+
|
252 |
+
|
253 |
+
def get_aligned_face_and_landmarks(im, face_cache, aligned_face_size = 256, padding=(0, 0)):
|
254 |
+
"""
|
255 |
+
get all aligned faces and landmarks of all images
|
256 |
+
:param imgs: origin images
|
257 |
+
:param fa: face_alignment package
|
258 |
+
:return:
|
259 |
+
"""
|
260 |
+
aligned_cur_shapes = []
|
261 |
+
aligned_cur_im = []
|
262 |
+
for mat, points in face_cache:
|
263 |
+
# Get transform matrix
|
264 |
+
aligned_face = get_2d_aligned_face(im, mat, aligned_face_size, padding)
|
265 |
+
aligned_shape = get_2d_aligned_landmarks([mat, points], aligned_face_size, padding)
|
266 |
+
aligned_cur_shapes.append(aligned_shape)
|
267 |
+
aligned_cur_im.append(aligned_face)
|
268 |
+
return aligned_cur_im, aligned_cur_shapes
|
269 |
+
|
270 |
+
|
271 |
+
def face_warp(im, face, trans_matrix, size, padding):
|
272 |
+
new_face = np.clip(face, 0, 255).astype(im.dtype)
|
273 |
+
image_size = im.shape[1], im.shape[0]
|
274 |
+
|
275 |
+
tmp_matrix = trans_matrix * size
|
276 |
+
delta_matrix = np.array([[0., 0., padding[0]*1.0], [0., 0., padding[1]*1.0]])
|
277 |
+
tmp_matrix = tmp_matrix + delta_matrix
|
278 |
+
|
279 |
+
# Warp the new face onto a blank canvas
|
280 |
+
warped_face = np.zeros_like(im)
|
281 |
+
cv2.warpAffine(new_face, tmp_matrix, image_size, warped_face, cv2.WARP_INVERSE_MAP,
|
282 |
+
cv2.BORDER_TRANSPARENT)
|
283 |
+
|
284 |
+
# Create a mask of the warped face
|
285 |
+
mask = (warped_face > 0).astype(np.uint8)
|
286 |
+
|
287 |
+
# Blend the warped face with the original image
|
288 |
+
new_image = im * (1 - mask) + warped_face * mask
|
289 |
+
|
290 |
+
return new_image, mask
|
291 |
+
|
292 |
+
|
293 |
+
def get_face_loc(im, face_detector, scale=0):
|
294 |
+
""" get face locations, color order of images is rgb """
|
295 |
+
faces = face_detector(np.uint8(im), scale)
|
296 |
+
face_list = []
|
297 |
+
if faces is not None or len(faces) > 0:
|
298 |
+
for i, d in enumerate(faces):
|
299 |
+
try:
|
300 |
+
face_list.append([d.left(), d.top(), d.right(), d.bottom()])
|
301 |
+
except:
|
302 |
+
face_list.append([d.rect.left(), d.rect.top(), d.rect.right(), d.rect.bottom()])
|
303 |
+
return face_list
|
304 |
+
|
305 |
+
|
306 |
+
|
307 |
+
def align(im, face_detector, lmark_predictor, scale=0):
|
308 |
+
# This version we handle all faces in view
|
309 |
+
# channel order rgb
|
310 |
+
im = np.uint8(im)
|
311 |
+
faces = face_detector(im, scale)
|
312 |
+
face_list = []
|
313 |
+
if faces is not None or len(faces) > 0:
|
314 |
+
for pred in faces:
|
315 |
+
try:
|
316 |
+
points = shape_to_np(lmark_predictor(im, pred))
|
317 |
+
except:
|
318 |
+
points = shape_to_np(lmark_predictor(im, pred.rect))
|
319 |
+
trans_matrix = umeyama(points[17:], landmarks_2D, True)[0:2]
|
320 |
+
face_list.append([trans_matrix, points])
|
321 |
+
return face_list
|
322 |
+
|
323 |
+
|
324 |
+
class FWABlendDataset(DeepfakeAbstractBaseDataset):
|
325 |
+
def __init__(self, config=None):
|
326 |
+
super().__init__(config, mode='train')
|
327 |
+
self.transforms = T.Compose([
|
328 |
+
T.ToTensor(),
|
329 |
+
T.Normalize(mean=config['mean'],
|
330 |
+
std=config['std'])
|
331 |
+
])
|
332 |
+
self.resolution = config['resolution']
|
333 |
+
|
334 |
+
|
335 |
+
def blended_aug(self, im):
|
336 |
+
transform = A.Compose([
|
337 |
+
A.RGBShift((-20,20),(-20,20),(-20,20),p=0.3),
|
338 |
+
A.HueSaturationValue(hue_shift_limit=(-0.3,0.3), sat_shift_limit=(-0.3,0.3), val_shift_limit=(-0.3,0.3), p=0.3),
|
339 |
+
A.RandomBrightnessContrast(brightness_limit=(-0.3,0.3), contrast_limit=(-0.3,0.3), p=0.3),
|
340 |
+
A.ImageCompression(quality_lower=40, quality_upper=100,p=0.5)
|
341 |
+
])
|
342 |
+
# Apply transformations
|
343 |
+
im_aug = transform(image=im)
|
344 |
+
return im_aug['image']
|
345 |
+
|
346 |
+
|
347 |
+
def data_aug(self, im):
|
348 |
+
"""
|
349 |
+
Apply data augmentation on the input image using albumentations.
|
350 |
+
"""
|
351 |
+
transform = A.Compose([
|
352 |
+
A.Compose([
|
353 |
+
A.RGBShift((-20,20),(-20,20),(-20,20),p=0.3),
|
354 |
+
A.HueSaturationValue(hue_shift_limit=(-0.3,0.3), sat_shift_limit=(-0.3,0.3), val_shift_limit=(-0.3,0.3), p=1),
|
355 |
+
A.RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1,0.1), p=1),
|
356 |
+
],p=1),
|
357 |
+
A.OneOf([
|
358 |
+
RandomDownScale(p=1),
|
359 |
+
A.Sharpen(alpha=(0.2, 0.5), lightness=(0.5, 1.0), p=1),
|
360 |
+
],p=1),
|
361 |
+
], p=1.)
|
362 |
+
# Apply transformations
|
363 |
+
im_aug = transform(image=im)
|
364 |
+
return im_aug['image']
|
365 |
+
|
366 |
+
|
367 |
+
def blend_images(self, img_path):
|
368 |
+
#im = cv2.imread(img_path)
|
369 |
+
im = np.array(self.load_rgb(img_path))
|
370 |
+
|
371 |
+
# Get the alignment of the head
|
372 |
+
face_cache = align(im, face_detector, face_predictor)
|
373 |
+
|
374 |
+
# Get the aligned face and landmarks
|
375 |
+
aligned_im_head, aligned_shape = get_aligned_face_and_landmarks(im, face_cache)
|
376 |
+
# If no faces were detected in the image, return None (or any suitable value)
|
377 |
+
if len(aligned_im_head) == 0 or len(aligned_shape) == 0:
|
378 |
+
return None, None
|
379 |
+
aligned_im_head = aligned_im_head[0]
|
380 |
+
aligned_shape = aligned_shape[0]
|
381 |
+
|
382 |
+
# Apply transformations to the face
|
383 |
+
scale_factor = random.choice([0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8])
|
384 |
+
scaled_face = cv2.resize(aligned_im_head, (0, 0), fx=scale_factor, fy=scale_factor)
|
385 |
+
|
386 |
+
# Apply Gaussian blur to the scaled face
|
387 |
+
blurred_face = cv2.GaussianBlur(scaled_face, (5, 5), 0)
|
388 |
+
|
389 |
+
# Resize the processed image back to the original size
|
390 |
+
resized_face = cv2.resize(blurred_face, (aligned_im_head.shape[1], aligned_im_head.shape[0]))
|
391 |
+
|
392 |
+
# Generate a random facial mask
|
393 |
+
mask = get_mask(aligned_shape.astype(np.float32), resized_face, std=20, deform=True)
|
394 |
+
|
395 |
+
# Apply the mask to the resized face
|
396 |
+
masked_face = cv2.bitwise_and(resized_face, resized_face, mask=mask)
|
397 |
+
|
398 |
+
# do aug before warp
|
399 |
+
im = np.array(self.blended_aug(im))
|
400 |
+
|
401 |
+
# Warp the face back to the original image
|
402 |
+
im, masked_face = face_warp(im, masked_face, face_cache[0][0], self.resolution, [0, 0])
|
403 |
+
shape = get_2d_aligned_landmarks(face_cache[0], self.resolution, [0, 0])
|
404 |
+
return im, masked_face
|
405 |
+
|
406 |
+
|
407 |
+
def process_images(self, img_path, index):
|
408 |
+
"""
|
409 |
+
Process an image following the data generation pipeline.
|
410 |
+
"""
|
411 |
+
blended_im, mask = self.blend_images(img_path)
|
412 |
+
|
413 |
+
# Prepare images and titles for the combined image
|
414 |
+
imid_fg = np.array(self.load_rgb(img_path))
|
415 |
+
imid_fg = np.array(self.data_aug(imid_fg))
|
416 |
+
|
417 |
+
if blended_im is None or mask is None:
|
418 |
+
return imid_fg, None
|
419 |
+
|
420 |
+
# images = [
|
421 |
+
# imid_fg,
|
422 |
+
# np.where(mask.astype(np.uint8)>0, 255, 0),
|
423 |
+
# blended_im,
|
424 |
+
# ]
|
425 |
+
# titles = ["Image", "Mask", "Blended Image"]
|
426 |
+
|
427 |
+
# # Save the combined image
|
428 |
+
# os.makedirs('fwa_examples_2', exist_ok=True)
|
429 |
+
# self.save_combined_image(images, titles, index, f'fwa_examples_2/combined_image_{index}.png')
|
430 |
+
return imid_fg, blended_im
|
431 |
+
|
432 |
+
|
433 |
+
def post_proc(self, img):
|
434 |
+
'''
|
435 |
+
if self.mode == 'train':
|
436 |
+
#if np.random.rand() < 0.5:
|
437 |
+
# img = random_add_noise(img)
|
438 |
+
#add_gaussian_noise(img)
|
439 |
+
if np.random.rand() < 0.5:
|
440 |
+
#img, _ = change_res(img)
|
441 |
+
img = gaussian_blur(img)
|
442 |
+
'''
|
443 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
444 |
+
im_aug = self.blended_aug(img)
|
445 |
+
im_aug = Image.fromarray(np.uint8(img))
|
446 |
+
im_aug = self.transforms(im_aug)
|
447 |
+
return im_aug
|
448 |
+
|
449 |
+
|
450 |
+
@staticmethod
|
451 |
+
def save_combined_image(images, titles, index, save_path):
|
452 |
+
"""
|
453 |
+
Save the combined image with titles for each single image.
|
454 |
+
|
455 |
+
Args:
|
456 |
+
images (List[np.ndarray]): List of images to be combined.
|
457 |
+
titles (List[str]): List of titles for each image.
|
458 |
+
index (int): Index of the image.
|
459 |
+
save_path (str): Path to save the combined image.
|
460 |
+
"""
|
461 |
+
# Determine the maximum height and width among the images
|
462 |
+
max_height = max(image.shape[0] for image in images)
|
463 |
+
max_width = max(image.shape[1] for image in images)
|
464 |
+
|
465 |
+
# Create the canvas
|
466 |
+
canvas = np.zeros((max_height * len(images), max_width, 3), dtype=np.uint8)
|
467 |
+
|
468 |
+
# Place the images and titles on the canvas
|
469 |
+
current_height = 0
|
470 |
+
for image, title in zip(images, titles):
|
471 |
+
height, width = image.shape[:2]
|
472 |
+
|
473 |
+
# Check if image has a third dimension (color channels)
|
474 |
+
if image.ndim == 2:
|
475 |
+
# If not, add a third dimension
|
476 |
+
image = np.tile(image[..., None], (1, 1, 3))
|
477 |
+
|
478 |
+
canvas[current_height : current_height + height, :width] = image
|
479 |
+
cv2.putText(
|
480 |
+
canvas, title, (10, current_height + 30),
|
481 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2
|
482 |
+
)
|
483 |
+
current_height += height
|
484 |
+
|
485 |
+
# Save the combined image
|
486 |
+
cv2.imwrite(save_path, canvas)
|
487 |
+
|
488 |
+
|
489 |
+
def __getitem__(self, index):
|
490 |
+
"""
|
491 |
+
Get an item from the dataset by index.
|
492 |
+
"""
|
493 |
+
one_img_path = self.data_dict['image'][index]
|
494 |
+
try:
|
495 |
+
label = 1 if one_img_path.split('/')[6]=='manipulated_sequences' else 0
|
496 |
+
except Exception as e:
|
497 |
+
label = 1 if one_img_path.split('\\')[6] == 'manipulated_sequences' else 0
|
498 |
+
blend_label = 1
|
499 |
+
imid, manipulate_img = self.process_images(one_img_path, index)
|
500 |
+
|
501 |
+
if manipulate_img is None:
|
502 |
+
manipulate_img = deepcopy(imid)
|
503 |
+
blend_label = label
|
504 |
+
manipulate_img = self.post_proc(manipulate_img)
|
505 |
+
imid = self.post_proc(imid)
|
506 |
+
|
507 |
+
# blend data
|
508 |
+
fake_data_tuple = (manipulate_img, blend_label)
|
509 |
+
# original data
|
510 |
+
real_data_tuple = (imid, label)
|
511 |
+
|
512 |
+
return fake_data_tuple, real_data_tuple
|
513 |
+
|
514 |
+
|
515 |
+
@staticmethod
|
516 |
+
def collate_fn(batch):
|
517 |
+
"""
|
518 |
+
Collates batches of data and shuffles the images.
|
519 |
+
"""
|
520 |
+
# Unzip the batch
|
521 |
+
fake_data, real_data = zip(*batch)
|
522 |
+
|
523 |
+
# Unzip the fake and real data
|
524 |
+
fake_images, fake_labels = zip(*fake_data)
|
525 |
+
real_images, real_labels = zip(*real_data)
|
526 |
+
|
527 |
+
# Combine fake and real data
|
528 |
+
images = torch.stack(fake_images + real_images)
|
529 |
+
labels = torch.tensor(fake_labels + real_labels)
|
530 |
+
|
531 |
+
# Combine images, boundaries, and labels into tuples
|
532 |
+
combined_data = list(zip(images, labels))
|
533 |
+
|
534 |
+
# Shuffle the combined data
|
535 |
+
random.shuffle(combined_data)
|
536 |
+
|
537 |
+
# Unzip the shuffled data
|
538 |
+
images, labels = zip(*combined_data)
|
539 |
+
|
540 |
+
# Create the data dictionary
|
541 |
+
data_dict = {
|
542 |
+
'image': torch.stack(images),
|
543 |
+
'label': torch.tensor(labels),
|
544 |
+
'mask': None,
|
545 |
+
'landmark': None # Add your landmark data if available
|
546 |
+
}
|
547 |
+
|
548 |
+
return data_dict
|
training/dataset/generate_parsing_mask.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
# author: Zhiyuan Yan
|
3 |
+
# email: [email protected]
|
4 |
+
# date: 2024-01-26
|
5 |
+
|
6 |
+
The code is designed for self-blending method (SBI, CVPR 2024).
|
7 |
+
'''
|
8 |
+
|
9 |
+
import sys
|
10 |
+
sys.path.append('.')
|
11 |
+
|
12 |
+
import os
|
13 |
+
import cv2
|
14 |
+
import yaml
|
15 |
+
import random
|
16 |
+
import torch
|
17 |
+
import torch.nn as nn
|
18 |
+
from PIL import Image
|
19 |
+
import numpy as np
|
20 |
+
from copy import deepcopy
|
21 |
+
import albumentations as A
|
22 |
+
from training.dataset.abstract_dataset import DeepfakeAbstractBaseDataset
|
23 |
+
from training.dataset.sbi_api import SBI_API
|
24 |
+
from training.dataset.utils.bi_online_generation_yzy import random_get_hull
|
25 |
+
from training.dataset.SimSwap.test_one_image import self_blend
|
26 |
+
|
27 |
+
import warnings
|
28 |
+
warnings.filterwarnings('ignore')
|
29 |
+
|
30 |
+
|
31 |
+
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
|
32 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
33 |
+
image_processor = SegformerImageProcessor.from_pretrained("/Youtu_Pangu_Security_Public/youtu-pangu-public/zhiyuanyan/huggingface/hub/models--jonathandinu--face-parsing/snapshots/a2bf62f39dfd8f8856a3c19be8b0707a8d68abdd")
|
34 |
+
face_parser = SegformerForSemanticSegmentation.from_pretrained("/Youtu_Pangu_Security_Public/youtu-pangu-public/zhiyuanyan/huggingface/hub/models--jonathandinu--face-parsing/snapshots/a2bf62f39dfd8f8856a3c19be8b0707a8d68abdd").to(device)
|
35 |
+
|
36 |
+
|
37 |
+
def create_facial_mask(mask, with_neck=False):
|
38 |
+
facial_labels = [1, 2, 3, 4, 5, 6, 7, 10, 11, 12]
|
39 |
+
if with_neck:
|
40 |
+
facial_labels += [17]
|
41 |
+
facial_mask = np.zeros_like(mask, dtype=bool)
|
42 |
+
for label in facial_labels:
|
43 |
+
facial_mask |= (mask == label)
|
44 |
+
return facial_mask.astype(np.uint8) * 255
|
45 |
+
|
46 |
+
|
47 |
+
def face_parsing_mask(img1, with_neck=False):
|
48 |
+
# run inference on image
|
49 |
+
img1 = Image.fromarray(img1)
|
50 |
+
inputs = image_processor(images=img1, return_tensors="pt").to(device)
|
51 |
+
outputs = face_parser(**inputs)
|
52 |
+
logits = outputs.logits # shape (batch_size, num_labels, ~height/4, ~width/4)
|
53 |
+
|
54 |
+
# resize output to match input image dimensions
|
55 |
+
upsampled_logits = nn.functional.interpolate(logits,
|
56 |
+
size=img1.size[::-1], # H x W
|
57 |
+
mode='bilinear',
|
58 |
+
align_corners=False)
|
59 |
+
labels = upsampled_logits.argmax(dim=1)[0]
|
60 |
+
mask = labels.cpu().numpy()
|
61 |
+
mask = create_facial_mask(mask, with_neck)
|
62 |
+
return mask
|
63 |
+
|
64 |
+
|
65 |
+
class YZYDataset(DeepfakeAbstractBaseDataset):
|
66 |
+
def __init__(self, config=None, mode='train'):
|
67 |
+
super().__init__(config, mode)
|
68 |
+
|
69 |
+
# Get real lists
|
70 |
+
# Fix the label of real images to be 0
|
71 |
+
self.real_imglist = [(img, label) for img, label in zip(self.image_list, self.label_list) if label == 0]
|
72 |
+
|
73 |
+
|
74 |
+
def __getitem__(self, index):
|
75 |
+
# Get the real image paths and labels
|
76 |
+
real_image_path, real_label = self.real_imglist[index]
|
77 |
+
# real_image_path = real_image_path.replace('/Youtu_Pangu_Security_Public/', '/Youtu_Pangu_Security/public/')
|
78 |
+
|
79 |
+
# Load the real images
|
80 |
+
real_image = self.load_rgb(real_image_path)
|
81 |
+
real_image = np.array(real_image) # Convert to numpy array
|
82 |
+
|
83 |
+
# Face Parsing
|
84 |
+
mask = face_parsing_mask(real_image, with_neck=False)
|
85 |
+
parse_mask_path = real_image_path.replace('frames', 'parse_mask')
|
86 |
+
os.makedirs(os.path.dirname(parse_mask_path), exist_ok=True)
|
87 |
+
cv2.imwrite(parse_mask_path, mask)
|
88 |
+
|
89 |
+
# # SRI generation
|
90 |
+
# sri_image = self_blend(real_image)
|
91 |
+
# sri_path = real_image_path.replace('frames', 'sri_frames')
|
92 |
+
# os.makedirs(os.path.dirname(sri_path), exist_ok=True)
|
93 |
+
# cv2.imwrite(sri_path, sri_image)
|
94 |
+
|
95 |
+
@staticmethod
|
96 |
+
def collate_fn(batch):
|
97 |
+
data_dict = {
|
98 |
+
'image': None,
|
99 |
+
'label': None,
|
100 |
+
'landmark': None,
|
101 |
+
'mask': None,
|
102 |
+
}
|
103 |
+
return data_dict
|
104 |
+
|
105 |
+
def __len__(self):
|
106 |
+
return len(self.real_imglist)
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
if __name__ == '__main__':
|
111 |
+
with open('./training/config/detector/sbi.yaml', 'r') as f:
|
112 |
+
config = yaml.safe_load(f)
|
113 |
+
with open('./training/config/train_config.yaml', 'r') as f:
|
114 |
+
config2 = yaml.safe_load(f)
|
115 |
+
config2['data_manner'] = 'lmdb'
|
116 |
+
config['dataset_json_folder'] = '/Youtu_Pangu_Security_Public/youtu-pangu-public/zhiyuanyan/DeepfakeBenchv2/preprocessing/dataset_json'
|
117 |
+
config.update(config2)
|
118 |
+
train_set = YZYDataset(config=config, mode='train')
|
119 |
+
train_data_loader = \
|
120 |
+
torch.utils.data.DataLoader(
|
121 |
+
dataset=train_set,
|
122 |
+
batch_size=config['train_batchSize'],
|
123 |
+
shuffle=True,
|
124 |
+
num_workers=0,
|
125 |
+
collate_fn=train_set.collate_fn,
|
126 |
+
)
|
127 |
+
from tqdm import tqdm
|
128 |
+
for iteration, batch in enumerate(tqdm(train_data_loader)):
|
129 |
+
print(iteration)
|
training/dataset/generate_xray_nearest.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
# author: Zhiyuan Yan
|
3 |
+
# email: [email protected]
|
4 |
+
# date: 2023-03-30
|
5 |
+
|
6 |
+
The code is specifically designed for generating nearest sample pairs for Face X-ray.
|
7 |
+
Alternatively, you can utilize the pre-generated pkl files available in our GitHub repository. Please refer to the "Releases" section on our repository for accessing these files.
|
8 |
+
'''
|
9 |
+
|
10 |
+
import os
|
11 |
+
import json
|
12 |
+
import pickle
|
13 |
+
import numpy as np
|
14 |
+
import heapq
|
15 |
+
import random
|
16 |
+
from tqdm import tqdm
|
17 |
+
from scipy.spatial import KDTree
|
18 |
+
|
19 |
+
|
20 |
+
def load_landmark(file_path):
|
21 |
+
"""
|
22 |
+
Load 2D facial landmarks from a file path.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
file_path: A string indicating the path to the landmark file.
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
A numpy array containing the loaded landmarks.
|
29 |
+
|
30 |
+
Raises:
|
31 |
+
None.
|
32 |
+
"""
|
33 |
+
if file_path is None:
|
34 |
+
return np.zeros((81, 2))
|
35 |
+
if os.path.exists(file_path):
|
36 |
+
landmark = np.load(file_path)
|
37 |
+
return np.float32(landmark)
|
38 |
+
else:
|
39 |
+
return np.zeros((81, 2))
|
40 |
+
|
41 |
+
|
42 |
+
def get_landmark_dict(dataset_folder):
|
43 |
+
# Check if the dictionary has already been created
|
44 |
+
if os.path.exists('landmark_dict_ff.pkl'):
|
45 |
+
with open('landmark_dict_ff.pkl', 'rb') as f:
|
46 |
+
return pickle.load(f)
|
47 |
+
# Open the metadata file for the current folder
|
48 |
+
metadata_path = os.path.join(dataset_folder, "FaceForensics++.json")
|
49 |
+
with open(metadata_path, "r") as f:
|
50 |
+
metadata = json.load(f)
|
51 |
+
# Iterate over the metadata entries and add the landmark paths to the list
|
52 |
+
ff_real_data = metadata['FaceForensics++']['FF-real']
|
53 |
+
# Using dictionary comprehension to generate the landmark_dict
|
54 |
+
landmark_dict = {
|
55 |
+
frame_path.replace('frames', 'landmarks').replace(".png", ".npy"): load_landmark(
|
56 |
+
frame_path.replace('frames', 'landmarks').replace(".png", ".npy")
|
57 |
+
)
|
58 |
+
for mode, value in ff_real_data.items()
|
59 |
+
for video_name, video_info in tqdm(value['c23'].items())
|
60 |
+
for frame_path in video_info['frames']
|
61 |
+
}
|
62 |
+
# Save the dictionary to a pickle file
|
63 |
+
with open('landmark_dict_ffall.pkl', 'wb') as f:
|
64 |
+
pickle.dump(landmark_dict, f)
|
65 |
+
return landmark_dict
|
66 |
+
|
67 |
+
|
68 |
+
def get_nearest_faces_fixed_pair(landmark_info, num_neighbors):
|
69 |
+
'''
|
70 |
+
Using KDTree to find the nearest faces for each image (Much faster!!)
|
71 |
+
'''
|
72 |
+
random.seed(1024) # Fix the random seed for reproducibility
|
73 |
+
|
74 |
+
# Check if the dictionary has already been created
|
75 |
+
if os.path.exists('nearest_face_info.pkl'):
|
76 |
+
with open('nearest_face_info.pkl', 'rb') as f:
|
77 |
+
return pickle.load(f)
|
78 |
+
|
79 |
+
landmarks_array = np.array([lmk.flatten() for lmk in landmark_info.values()])
|
80 |
+
landmark_ids = list(landmark_info.keys())
|
81 |
+
|
82 |
+
# Build a KDTree using the flattened landmarks
|
83 |
+
tree = KDTree(landmarks_array)
|
84 |
+
|
85 |
+
nearest_faces = {}
|
86 |
+
for idx, this_lmk in tqdm(enumerate(landmarks_array), total=len(landmarks_array)):
|
87 |
+
# Query the KDTree for the nearest neighbors (excluding itself)
|
88 |
+
dists, indices = tree.query(this_lmk, k=num_neighbors + 1)
|
89 |
+
# Randomly pick one from the nearest N neighbors (excluding itself)
|
90 |
+
picked_idx = random.choice(indices[1:])
|
91 |
+
nearest_faces[landmark_ids[idx]] = landmark_ids[picked_idx]
|
92 |
+
|
93 |
+
# Save the dictionary to a pickle file
|
94 |
+
with open('nearest_face_info.pkl', 'wb') as f:
|
95 |
+
pickle.dump(nearest_faces, f)
|
96 |
+
|
97 |
+
return nearest_faces
|
98 |
+
|
99 |
+
|
100 |
+
def get_nearest_faces(landmark_info, num_neighbors):
|
101 |
+
'''
|
102 |
+
Using KDTree to find the nearest faces for each image (Much faster!!)
|
103 |
+
'''
|
104 |
+
random.seed(1024) # Fix the random seed for reproducibility
|
105 |
+
|
106 |
+
# Check if the dictionary has already been created
|
107 |
+
if os.path.exists('nearest_face_info.pkl'):
|
108 |
+
with open('nearest_face_info.pkl', 'rb') as f:
|
109 |
+
return pickle.load(f)
|
110 |
+
|
111 |
+
landmarks_array = np.array([lmk.flatten() for lmk in landmark_info.values()])
|
112 |
+
landmark_ids = list(landmark_info.keys())
|
113 |
+
|
114 |
+
# Build a KDTree using the flattened landmarks
|
115 |
+
tree = KDTree(landmarks_array)
|
116 |
+
|
117 |
+
nearest_faces = {}
|
118 |
+
for idx, this_lmk in tqdm(enumerate(landmarks_array), total=len(landmarks_array)):
|
119 |
+
# Query the KDTree for the nearest neighbors (excluding itself)
|
120 |
+
dists, indices = tree.query(this_lmk, k=num_neighbors + 1)
|
121 |
+
# Store the nearest N neighbors (excluding itself)
|
122 |
+
nearest_faces[landmark_ids[idx]] = [landmark_ids[i] for i in indices[1:]]
|
123 |
+
|
124 |
+
# Save the dictionary to a pickle file
|
125 |
+
with open('nearest_face_info.pkl', 'wb') as f:
|
126 |
+
pickle.dump(nearest_faces, f)
|
127 |
+
|
128 |
+
return nearest_faces
|
129 |
+
|
130 |
+
# Load the landmark dictionary and obtain the landmark dict
|
131 |
+
dataset_folder = "/home/zhiyuanyan/disfin/deepfake_benchmark/preprocessing/dataset_json/"
|
132 |
+
landmark_info = get_landmark_dict(dataset_folder)
|
133 |
+
|
134 |
+
# Get the nearest faces for each image (in landmark_dict)
|
135 |
+
num_neighbors = 100
|
136 |
+
nearest_faces_info = get_nearest_faces(landmark_info, num_neighbors) # running time: about 20 mins
|
training/dataset/iid_dataset.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
# author: Zhiyuan Yan
|
3 |
+
# email: [email protected]
|
4 |
+
# date: 2023-03-30
|
5 |
+
|
6 |
+
The code is designed for scenarios such as disentanglement-based methods where it is necessary to ensure an equal number of positive and negative samples.
|
7 |
+
'''
|
8 |
+
import os.path
|
9 |
+
from copy import deepcopy
|
10 |
+
import cv2
|
11 |
+
import math
|
12 |
+
import torch
|
13 |
+
import random
|
14 |
+
|
15 |
+
import yaml
|
16 |
+
from PIL import Image, ImageDraw
|
17 |
+
import numpy as np
|
18 |
+
from torch.utils.data import DataLoader
|
19 |
+
|
20 |
+
from dataset.abstract_dataset import DeepfakeAbstractBaseDataset
|
21 |
+
|
22 |
+
class IIDDataset(DeepfakeAbstractBaseDataset):
|
23 |
+
def __init__(self, config=None, mode='train'):
|
24 |
+
super().__init__(config, mode)
|
25 |
+
|
26 |
+
|
27 |
+
def __getitem__(self, index):
|
28 |
+
# Get the image paths and label
|
29 |
+
image_path = self.data_dict['image'][index]
|
30 |
+
if '\\' in image_path:
|
31 |
+
per = image_path.split('\\')[-2]
|
32 |
+
else:
|
33 |
+
per = image_path.split('/')[-2]
|
34 |
+
id_index = int(per.split('_')[-1]) # real video id
|
35 |
+
label = self.data_dict['label'][index]
|
36 |
+
|
37 |
+
# Load the image
|
38 |
+
try:
|
39 |
+
image = self.load_rgb(image_path)
|
40 |
+
except Exception as e:
|
41 |
+
# Skip this image and return the first one
|
42 |
+
print(f"Error loading image at index {index}: {e}")
|
43 |
+
return self.__getitem__(0)
|
44 |
+
image = np.array(image) # Convert to numpy array for data augmentation
|
45 |
+
|
46 |
+
# Do Data Augmentation
|
47 |
+
image_trans,_,_ = self.data_aug(image)
|
48 |
+
|
49 |
+
# To tensor and normalize
|
50 |
+
image_trans = self.normalize(self.to_tensor(image_trans))
|
51 |
+
|
52 |
+
return id_index, image_trans, label
|
53 |
+
|
54 |
+
@staticmethod
|
55 |
+
def collate_fn(batch):
|
56 |
+
"""
|
57 |
+
Collate a batch of data points.
|
58 |
+
|
59 |
+
Args:
|
60 |
+
batch (list): A list of tuples containing the image tensor, the label tensor,
|
61 |
+
the landmark tensor, and the mask tensor.
|
62 |
+
|
63 |
+
Returns:
|
64 |
+
A tuple containing the image tensor, the label tensor, the landmark tensor,
|
65 |
+
and the mask tensor.
|
66 |
+
"""
|
67 |
+
# Separate the image, label, landmark, and mask tensors
|
68 |
+
id_indexes, image_trans, label = zip(*batch)
|
69 |
+
|
70 |
+
# Stack the image, label, landmark, and mask tensors
|
71 |
+
images = torch.stack(image_trans, dim=0)
|
72 |
+
labels = torch.LongTensor(label)
|
73 |
+
ids = torch.LongTensor(id_indexes)
|
74 |
+
# Create a dictionary of the tensors
|
75 |
+
data_dict = {}
|
76 |
+
data_dict['image'] = images
|
77 |
+
data_dict['label'] = labels
|
78 |
+
data_dict['id_index'] = ids
|
79 |
+
data_dict['mask']=None
|
80 |
+
data_dict['landmark']=None
|
81 |
+
return data_dict
|
82 |
+
|
83 |
+
|
84 |
+
def draw_landmark(img,landmark):
|
85 |
+
draw = ImageDraw.Draw(img)
|
86 |
+
|
87 |
+
# landmark = np.stack([mean_face_x, mean_face_y], axis=1)
|
88 |
+
# landmark *=256
|
89 |
+
# 遍历每个特征点
|
90 |
+
for i, point in enumerate(landmark):
|
91 |
+
# 在图像上标记特征点
|
92 |
+
draw.ellipse((point[0] - 1, point[1] - 1, point[0] + 1, point[1] + 1), fill=(255, 0, 0))
|
93 |
+
# 在特征点旁边添加序号
|
94 |
+
draw.text((point[0], point[1]), str(i), fill=(255, 255, 255))
|
95 |
+
return img
|
96 |
+
|
97 |
+
|
98 |
+
if __name__ == '__main__':
|
99 |
+
detector_path = r"./training/config/detector/xception.yaml"
|
100 |
+
# weights_path = "./ckpts/xception/CDFv2/tb_v1/ov.pth"
|
101 |
+
with open(detector_path, 'r') as f:
|
102 |
+
config = yaml.safe_load(f)
|
103 |
+
with open('./training/config/train_config.yaml', 'r') as f:
|
104 |
+
config2 = yaml.safe_load(f)
|
105 |
+
config2['data_manner'] = 'lmdb'
|
106 |
+
config['dataset_json_folder'] = 'preprocessing/dataset_json_v3'
|
107 |
+
config.update(config2)
|
108 |
+
dataset = IIDDataset(config=config)
|
109 |
+
batch_size = 2
|
110 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True,collate_fn=dataset.collate_fn)
|
111 |
+
|
112 |
+
for i, batch in enumerate(dataloader):
|
113 |
+
print(f"Batch {i}: {batch}")
|
114 |
+
|
115 |
+
# 如果数据集返回的是一个元组(例如,(data, target)),可以这样获取:
|
116 |
+
img = batch['img']
|
training/dataset/library/000_0000.png
ADDED
![]() |
training/dataset/library/001_0000.png
ADDED
![]() |
training/dataset/library/DeepFakeMask.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python
|
2 |
+
# -*- coding: UTF-8 -*-
|
3 |
+
# Created by: algohunt
|
4 |
+
# Microsoft Research & Peking University
|
5 | |
6 |
+
# Copyright (c) 2019
|
7 |
+
|
8 |
+
#!/usr/bin/env python3
|
9 |
+
""" Masks functions for faceswap.py """
|
10 |
+
|
11 |
+
import inspect
|
12 |
+
import logging
|
13 |
+
import sys
|
14 |
+
|
15 |
+
import cv2
|
16 |
+
import numpy as np
|
17 |
+
|
18 |
+
# logger = logging.getLogger(__name__) # pylint: disable=invalid-name
|
19 |
+
|
20 |
+
|
21 |
+
def get_available_masks():
|
22 |
+
""" Return a list of the available masks for cli """
|
23 |
+
masks = sorted([name for name, obj in inspect.getmembers(sys.modules[__name__])
|
24 |
+
if inspect.isclass(obj) and name != "Mask"])
|
25 |
+
masks.append("none")
|
26 |
+
# logger.debug(masks)
|
27 |
+
return masks
|
28 |
+
|
29 |
+
|
30 |
+
def get_default_mask():
|
31 |
+
""" Set the default mask for cli """
|
32 |
+
masks = get_available_masks()
|
33 |
+
default = "dfl_full"
|
34 |
+
default = default if default in masks else masks[0]
|
35 |
+
# logger.debug(default)
|
36 |
+
return default
|
37 |
+
|
38 |
+
|
39 |
+
class Mask():
|
40 |
+
""" Parent class for masks
|
41 |
+
the output mask will be <mask_type>.mask
|
42 |
+
channels: 1, 3 or 4:
|
43 |
+
1 - Returns a single channel mask
|
44 |
+
3 - Returns a 3 channel mask
|
45 |
+
4 - Returns the original image with the mask in the alpha channel """
|
46 |
+
|
47 |
+
def __init__(self, landmarks, face, channels=4):
|
48 |
+
# logger.info("Initializing %s: (face_shape: %s, channels: %s, landmarks: %s)",
|
49 |
+
# self.__class__.__name__, face.shape, channels, landmarks)
|
50 |
+
self.landmarks = landmarks
|
51 |
+
self.face = face
|
52 |
+
self.channels = channels
|
53 |
+
|
54 |
+
mask = self.build_mask()
|
55 |
+
self.mask = self.merge_mask(mask)
|
56 |
+
#logger.info("Initialized %s", self.__class__.__name__)
|
57 |
+
|
58 |
+
def build_mask(self):
|
59 |
+
""" Override to build the mask """
|
60 |
+
raise NotImplementedError
|
61 |
+
|
62 |
+
def merge_mask(self, mask):
|
63 |
+
""" Return the mask in requested shape """
|
64 |
+
#logger.info("mask_shape: %s", mask.shape)
|
65 |
+
assert self.channels in (1, 3, 4), "Channels should be 1, 3 or 4"
|
66 |
+
assert mask.shape[2] == 1 and mask.ndim == 3, "Input mask be 3 dimensions with 1 channel"
|
67 |
+
|
68 |
+
if self.channels == 3:
|
69 |
+
retval = np.tile(mask, 3)
|
70 |
+
elif self.channels == 4:
|
71 |
+
retval = np.concatenate((self.face, mask), -1)
|
72 |
+
else:
|
73 |
+
retval = mask
|
74 |
+
|
75 |
+
#logger.info("Final mask shape: %s", retval.shape)
|
76 |
+
return retval
|
77 |
+
|
78 |
+
|
79 |
+
class dfl_full(Mask): # pylint: disable=invalid-name
|
80 |
+
""" DFL facial mask """
|
81 |
+
def build_mask(self):
|
82 |
+
mask = np.zeros(self.face.shape[0:2] + (1, ), dtype=np.float32)
|
83 |
+
|
84 |
+
nose_ridge = (self.landmarks[27:31], self.landmarks[33:34])
|
85 |
+
jaw = (self.landmarks[0:17],
|
86 |
+
self.landmarks[48:68],
|
87 |
+
self.landmarks[0:1],
|
88 |
+
self.landmarks[8:9],
|
89 |
+
self.landmarks[16:17])
|
90 |
+
eyes = (self.landmarks[17:27],
|
91 |
+
self.landmarks[0:1],
|
92 |
+
self.landmarks[27:28],
|
93 |
+
self.landmarks[16:17],
|
94 |
+
self.landmarks[33:34])
|
95 |
+
parts = [jaw, nose_ridge, eyes]
|
96 |
+
|
97 |
+
for item in parts:
|
98 |
+
merged = np.concatenate(item)
|
99 |
+
cv2.fillConvexPoly(mask, cv2.convexHull(merged), 255.) # pylint: disable=no-member
|
100 |
+
return mask
|
101 |
+
|
102 |
+
|
103 |
+
class components(Mask): # pylint: disable=invalid-name
|
104 |
+
""" Component model mask """
|
105 |
+
def build_mask(self):
|
106 |
+
mask = np.zeros(self.face.shape[0:2] + (1, ), dtype=np.float32)
|
107 |
+
|
108 |
+
r_jaw = (self.landmarks[0:9], self.landmarks[17:18])
|
109 |
+
l_jaw = (self.landmarks[8:17], self.landmarks[26:27])
|
110 |
+
r_cheek = (self.landmarks[17:20], self.landmarks[8:9])
|
111 |
+
l_cheek = (self.landmarks[24:27], self.landmarks[8:9])
|
112 |
+
nose_ridge = (self.landmarks[19:25], self.landmarks[8:9],)
|
113 |
+
r_eye = (self.landmarks[17:22],
|
114 |
+
self.landmarks[27:28],
|
115 |
+
self.landmarks[31:36],
|
116 |
+
self.landmarks[8:9])
|
117 |
+
l_eye = (self.landmarks[22:27],
|
118 |
+
self.landmarks[27:28],
|
119 |
+
self.landmarks[31:36],
|
120 |
+
self.landmarks[8:9])
|
121 |
+
nose = (self.landmarks[27:31], self.landmarks[31:36])
|
122 |
+
parts = [r_jaw, l_jaw, r_cheek, l_cheek, nose_ridge, r_eye, l_eye, nose]
|
123 |
+
|
124 |
+
for item in parts:
|
125 |
+
merged = np.concatenate(item)
|
126 |
+
cv2.fillConvexPoly(mask, cv2.convexHull(merged), 255.) # pylint: disable=no-member
|
127 |
+
return mask
|
128 |
+
|
129 |
+
|
130 |
+
class extended(Mask): # pylint: disable=invalid-name
|
131 |
+
""" Extended mask
|
132 |
+
Based on components mask. Attempts to extend the eyebrow points up the forehead
|
133 |
+
"""
|
134 |
+
def build_mask(self):
|
135 |
+
mask = np.zeros(self.face.shape[0:2] + (1, ), dtype=np.float32)
|
136 |
+
|
137 |
+
landmarks = self.landmarks.copy()
|
138 |
+
# mid points between the side of face and eye point
|
139 |
+
ml_pnt = (landmarks[36] + landmarks[0]) // 2
|
140 |
+
mr_pnt = (landmarks[16] + landmarks[45]) // 2
|
141 |
+
|
142 |
+
# mid points between the mid points and eye
|
143 |
+
ql_pnt = (landmarks[36] + ml_pnt) // 2
|
144 |
+
qr_pnt = (landmarks[45] + mr_pnt) // 2
|
145 |
+
|
146 |
+
# Top of the eye arrays
|
147 |
+
bot_l = np.array((ql_pnt, landmarks[36], landmarks[37], landmarks[38], landmarks[39]))
|
148 |
+
bot_r = np.array((landmarks[42], landmarks[43], landmarks[44], landmarks[45], qr_pnt))
|
149 |
+
|
150 |
+
# Eyebrow arrays
|
151 |
+
top_l = landmarks[17:22]
|
152 |
+
top_r = landmarks[22:27]
|
153 |
+
|
154 |
+
# Adjust eyebrow arrays
|
155 |
+
landmarks[17:22] = top_l + ((top_l - bot_l) // 2)
|
156 |
+
landmarks[22:27] = top_r + ((top_r - bot_r) // 2)
|
157 |
+
|
158 |
+
r_jaw = (landmarks[0:9], landmarks[17:18])
|
159 |
+
l_jaw = (landmarks[8:17], landmarks[26:27])
|
160 |
+
r_cheek = (landmarks[17:20], landmarks[8:9])
|
161 |
+
l_cheek = (landmarks[24:27], landmarks[8:9])
|
162 |
+
nose_ridge = (landmarks[19:25], landmarks[8:9],)
|
163 |
+
r_eye = (landmarks[17:22], landmarks[27:28], landmarks[31:36], landmarks[8:9])
|
164 |
+
l_eye = (landmarks[22:27], landmarks[27:28], landmarks[31:36], landmarks[8:9])
|
165 |
+
nose = (landmarks[27:31], landmarks[31:36])
|
166 |
+
parts = [r_jaw, l_jaw, r_cheek, l_cheek, nose_ridge, r_eye, l_eye, nose]
|
167 |
+
|
168 |
+
for item in parts:
|
169 |
+
merged = np.concatenate(item)
|
170 |
+
cv2.fillConvexPoly(mask, cv2.convexHull(merged), 255.) # pylint: disable=no-member
|
171 |
+
return mask
|
172 |
+
|
173 |
+
|
174 |
+
class facehull(Mask): # pylint: disable=invalid-name
|
175 |
+
""" Basic face hull mask """
|
176 |
+
def build_mask(self):
|
177 |
+
mask = np.zeros(self.face.shape[0:2] + (1, ), dtype=np.float32)
|
178 |
+
hull = cv2.convexHull( # pylint: disable=no-member
|
179 |
+
np.array(self.landmarks).reshape((-1, 2)))
|
180 |
+
cv2.fillConvexPoly(mask, hull, 255.0, lineType=cv2.LINE_AA) # pylint: disable=no-member
|
181 |
+
return mask
|
training/dataset/library/LICENSE
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GNU GENERAL PUBLIC LICENSE
|
2 |
+
Version 3, 29 June 2007
|
3 |
+
|
4 |
+
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
5 |
+
Everyone is permitted to copy and distribute verbatim copies
|
6 |
+
of this license document, but changing it is not allowed.
|
7 |
+
|
8 |
+
Preamble
|
9 |
+
|
10 |
+
The GNU General Public License is a free, copyleft license for
|
11 |
+
software and other kinds of works.
|
12 |
+
|
13 |
+
The licenses for most software and other practical works are designed
|
14 |
+
to take away your freedom to share and change the works. By contrast,
|
15 |
+
the GNU General Public License is intended to guarantee your freedom to
|
16 |
+
share and change all versions of a program--to make sure it remains free
|
17 |
+
software for all its users. We, the Free Software Foundation, use the
|
18 |
+
GNU General Public License for most of our software; it applies also to
|
19 |
+
any other work released this way by its authors. You can apply it to
|
20 |
+
your programs, too.
|
21 |
+
|
22 |
+
When we speak of free software, we are referring to freedom, not
|
23 |
+
price. Our General Public Licenses are designed to make sure that you
|
24 |
+
have the freedom to distribute copies of free software (and charge for
|
25 |
+
them if you wish), that you receive source code or can get it if you
|
26 |
+
want it, that you can change the software or use pieces of it in new
|
27 |
+
free programs, and that you know you can do these things.
|
28 |
+
|
29 |
+
To protect your rights, we need to prevent others from denying you
|
30 |
+
these rights or asking you to surrender the rights. Therefore, you have
|
31 |
+
certain responsibilities if you distribute copies of the software, or if
|
32 |
+
you modify it: responsibilities to respect the freedom of others.
|
33 |
+
|
34 |
+
For example, if you distribute copies of such a program, whether
|
35 |
+
gratis or for a fee, you must pass on to the recipients the same
|
36 |
+
freedoms that you received. You must make sure that they, too, receive
|
37 |
+
or can get the source code. And you must show them these terms so they
|
38 |
+
know their rights.
|
39 |
+
|
40 |
+
Developers that use the GNU GPL protect your rights with two steps:
|
41 |
+
(1) assert copyright on the software, and (2) offer you this License
|
42 |
+
giving you legal permission to copy, distribute and/or modify it.
|
43 |
+
|
44 |
+
For the developers' and authors' protection, the GPL clearly explains
|
45 |
+
that there is no warranty for this free software. For both users' and
|
46 |
+
authors' sake, the GPL requires that modified versions be marked as
|
47 |
+
changed, so that their problems will not be attributed erroneously to
|
48 |
+
authors of previous versions.
|
49 |
+
|
50 |
+
Some devices are designed to deny users access to install or run
|
51 |
+
modified versions of the software inside them, although the manufacturer
|
52 |
+
can do so. This is fundamentally incompatible with the aim of
|
53 |
+
protecting users' freedom to change the software. The systematic
|
54 |
+
pattern of such abuse occurs in the area of products for individuals to
|
55 |
+
use, which is precisely where it is most unacceptable. Therefore, we
|
56 |
+
have designed this version of the GPL to prohibit the practice for those
|
57 |
+
products. If such problems arise substantially in other domains, we
|
58 |
+
stand ready to extend this provision to those domains in future versions
|
59 |
+
of the GPL, as needed to protect the freedom of users.
|
60 |
+
|
61 |
+
Finally, every program is threatened constantly by software patents.
|
62 |
+
States should not allow patents to restrict development and use of
|
63 |
+
software on general-purpose computers, but in those that do, we wish to
|
64 |
+
avoid the special danger that patents applied to a free program could
|
65 |
+
make it effectively proprietary. To prevent this, the GPL assures that
|
66 |
+
patents cannot be used to render the program non-free.
|
67 |
+
|
68 |
+
The precise terms and conditions for copying, distribution and
|
69 |
+
modification follow.
|
70 |
+
|
71 |
+
TERMS AND CONDITIONS
|
72 |
+
|
73 |
+
0. Definitions.
|
74 |
+
|
75 |
+
"This License" refers to version 3 of the GNU General Public License.
|
76 |
+
|
77 |
+
"Copyright" also means copyright-like laws that apply to other kinds of
|
78 |
+
works, such as semiconductor masks.
|
79 |
+
|
80 |
+
"The Program" refers to any copyrightable work licensed under this
|
81 |
+
License. Each licensee is addressed as "you". "Licensees" and
|
82 |
+
"recipients" may be individuals or organizations.
|
83 |
+
|
84 |
+
To "modify" a work means to copy from or adapt all or part of the work
|
85 |
+
in a fashion requiring copyright permission, other than the making of an
|
86 |
+
exact copy. The resulting work is called a "modified version" of the
|
87 |
+
earlier work or a work "based on" the earlier work.
|
88 |
+
|
89 |
+
A "covered work" means either the unmodified Program or a work based
|
90 |
+
on the Program.
|
91 |
+
|
92 |
+
To "propagate" a work means to do anything with it that, without
|
93 |
+
permission, would make you directly or secondarily liable for
|
94 |
+
infringement under applicable copyright law, except executing it on a
|
95 |
+
computer or modifying a private copy. Propagation includes copying,
|
96 |
+
distribution (with or without modification), making available to the
|
97 |
+
public, and in some countries other activities as well.
|
98 |
+
|
99 |
+
To "convey" a work means any kind of propagation that enables other
|
100 |
+
parties to make or receive copies. Mere interaction with a user through
|
101 |
+
a computer network, with no transfer of a copy, is not conveying.
|
102 |
+
|
103 |
+
An interactive user interface displays "Appropriate Legal Notices"
|
104 |
+
to the extent that it includes a convenient and prominently visible
|
105 |
+
feature that (1) displays an appropriate copyright notice, and (2)
|
106 |
+
tells the user that there is no warranty for the work (except to the
|
107 |
+
extent that warranties are provided), that licensees may convey the
|
108 |
+
work under this License, and how to view a copy of this License. If
|
109 |
+
the interface presents a list of user commands or options, such as a
|
110 |
+
menu, a prominent item in the list meets this criterion.
|
111 |
+
|
112 |
+
1. Source Code.
|
113 |
+
|
114 |
+
The "source code" for a work means the preferred form of the work
|
115 |
+
for making modifications to it. "Object code" means any non-source
|
116 |
+
form of a work.
|
117 |
+
|
118 |
+
A "Standard Interface" means an interface that either is an official
|
119 |
+
standard defined by a recognized standards body, or, in the case of
|
120 |
+
interfaces specified for a particular programming language, one that
|
121 |
+
is widely used among developers working in that language.
|
122 |
+
|
123 |
+
The "System Libraries" of an executable work include anything, other
|
124 |
+
than the work as a whole, that (a) is included in the normal form of
|
125 |
+
packaging a Major Component, but which is not part of that Major
|
126 |
+
Component, and (b) serves only to enable use of the work with that
|
127 |
+
Major Component, or to implement a Standard Interface for which an
|
128 |
+
implementation is available to the public in source code form. A
|
129 |
+
"Major Component", in this context, means a major essential component
|
130 |
+
(kernel, window system, and so on) of the specific operating system
|
131 |
+
(if any) on which the executable work runs, or a compiler used to
|
132 |
+
produce the work, or an object code interpreter used to run it.
|
133 |
+
|
134 |
+
The "Corresponding Source" for a work in object code form means all
|
135 |
+
the source code needed to generate, install, and (for an executable
|
136 |
+
work) run the object code and to modify the work, including scripts to
|
137 |
+
control those activities. However, it does not include the work's
|
138 |
+
System Libraries, or general-purpose tools or generally available free
|
139 |
+
programs which are used unmodified in performing those activities but
|
140 |
+
which are not part of the work. For example, Corresponding Source
|
141 |
+
includes interface definition files associated with source files for
|
142 |
+
the work, and the source code for shared libraries and dynamically
|
143 |
+
linked subprograms that the work is specifically designed to require,
|
144 |
+
such as by intimate data communication or control flow between those
|
145 |
+
subprograms and other parts of the work.
|
146 |
+
|
147 |
+
The Corresponding Source need not include anything that users
|
148 |
+
can regenerate automatically from other parts of the Corresponding
|
149 |
+
Source.
|
150 |
+
|
151 |
+
The Corresponding Source for a work in source code form is that
|
152 |
+
same work.
|
153 |
+
|
154 |
+
2. Basic Permissions.
|
155 |
+
|
156 |
+
All rights granted under this License are granted for the term of
|
157 |
+
copyright on the Program, and are irrevocable provided the stated
|
158 |
+
conditions are met. This License explicitly affirms your unlimited
|
159 |
+
permission to run the unmodified Program. The output from running a
|
160 |
+
covered work is covered by this License only if the output, given its
|
161 |
+
content, constitutes a covered work. This License acknowledges your
|
162 |
+
rights of fair use or other equivalent, as provided by copyright law.
|
163 |
+
|
164 |
+
You may make, run and propagate covered works that you do not
|
165 |
+
convey, without conditions so long as your license otherwise remains
|
166 |
+
in force. You may convey covered works to others for the sole purpose
|
167 |
+
of having them make modifications exclusively for you, or provide you
|
168 |
+
with facilities for running those works, provided that you comply with
|
169 |
+
the terms of this License in conveying all material for which you do
|
170 |
+
not control copyright. Those thus making or running the covered works
|
171 |
+
for you must do so exclusively on your behalf, under your direction
|
172 |
+
and control, on terms that prohibit them from making any copies of
|
173 |
+
your copyrighted material outside their relationship with you.
|
174 |
+
|
175 |
+
Conveying under any other circumstances is permitted solely under
|
176 |
+
the conditions stated below. Sublicensing is not allowed; section 10
|
177 |
+
makes it unnecessary.
|
178 |
+
|
179 |
+
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
180 |
+
|
181 |
+
No covered work shall be deemed part of an effective technological
|
182 |
+
measure under any applicable law fulfilling obligations under article
|
183 |
+
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
184 |
+
similar laws prohibiting or restricting circumvention of such
|
185 |
+
measures.
|
186 |
+
|
187 |
+
When you convey a covered work, you waive any legal power to forbid
|
188 |
+
circumvention of technological measures to the extent such circumvention
|
189 |
+
is effected by exercising rights under this License with respect to
|
190 |
+
the covered work, and you disclaim any intention to limit operation or
|
191 |
+
modification of the work as a means of enforcing, against the work's
|
192 |
+
users, your or third parties' legal rights to forbid circumvention of
|
193 |
+
technological measures.
|
194 |
+
|
195 |
+
4. Conveying Verbatim Copies.
|
196 |
+
|
197 |
+
You may convey verbatim copies of the Program's source code as you
|
198 |
+
receive it, in any medium, provided that you conspicuously and
|
199 |
+
appropriately publish on each copy an appropriate copyright notice;
|
200 |
+
keep intact all notices stating that this License and any
|
201 |
+
non-permissive terms added in accord with section 7 apply to the code;
|
202 |
+
keep intact all notices of the absence of any warranty; and give all
|
203 |
+
recipients a copy of this License along with the Program.
|
204 |
+
|
205 |
+
You may charge any price or no price for each copy that you convey,
|
206 |
+
and you may offer support or warranty protection for a fee.
|
207 |
+
|
208 |
+
5. Conveying Modified Source Versions.
|
209 |
+
|
210 |
+
You may convey a work based on the Program, or the modifications to
|
211 |
+
produce it from the Program, in the form of source code under the
|
212 |
+
terms of section 4, provided that you also meet all of these conditions:
|
213 |
+
|
214 |
+
a) The work must carry prominent notices stating that you modified
|
215 |
+
it, and giving a relevant date.
|
216 |
+
|
217 |
+
b) The work must carry prominent notices stating that it is
|
218 |
+
released under this License and any conditions added under section
|
219 |
+
7. This requirement modifies the requirement in section 4 to
|
220 |
+
"keep intact all notices".
|
221 |
+
|
222 |
+
c) You must license the entire work, as a whole, under this
|
223 |
+
License to anyone who comes into possession of a copy. This
|
224 |
+
License will therefore apply, along with any applicable section 7
|
225 |
+
additional terms, to the whole of the work, and all its parts,
|
226 |
+
regardless of how they are packaged. This License gives no
|
227 |
+
permission to license the work in any other way, but it does not
|
228 |
+
invalidate such permission if you have separately received it.
|
229 |
+
|
230 |
+
d) If the work has interactive user interfaces, each must display
|
231 |
+
Appropriate Legal Notices; however, if the Program has interactive
|
232 |
+
interfaces that do not display Appropriate Legal Notices, your
|
233 |
+
work need not make them do so.
|
234 |
+
|
235 |
+
A compilation of a covered work with other separate and independent
|
236 |
+
works, which are not by their nature extensions of the covered work,
|
237 |
+
and which are not combined with it such as to form a larger program,
|
238 |
+
in or on a volume of a storage or distribution medium, is called an
|
239 |
+
"aggregate" if the compilation and its resulting copyright are not
|
240 |
+
used to limit the access or legal rights of the compilation's users
|
241 |
+
beyond what the individual works permit. Inclusion of a covered work
|
242 |
+
in an aggregate does not cause this License to apply to the other
|
243 |
+
parts of the aggregate.
|
244 |
+
|
245 |
+
6. Conveying Non-Source Forms.
|
246 |
+
|
247 |
+
You may convey a covered work in object code form under the terms
|
248 |
+
of sections 4 and 5, provided that you also convey the
|
249 |
+
machine-readable Corresponding Source under the terms of this License,
|
250 |
+
in one of these ways:
|
251 |
+
|
252 |
+
a) Convey the object code in, or embodied in, a physical product
|
253 |
+
(including a physical distribution medium), accompanied by the
|
254 |
+
Corresponding Source fixed on a durable physical medium
|
255 |
+
customarily used for software interchange.
|
256 |
+
|
257 |
+
b) Convey the object code in, or embodied in, a physical product
|
258 |
+
(including a physical distribution medium), accompanied by a
|
259 |
+
written offer, valid for at least three years and valid for as
|
260 |
+
long as you offer spare parts or customer support for that product
|
261 |
+
model, to give anyone who possesses the object code either (1) a
|
262 |
+
copy of the Corresponding Source for all the software in the
|
263 |
+
product that is covered by this License, on a durable physical
|
264 |
+
medium customarily used for software interchange, for a price no
|
265 |
+
more than your reasonable cost of physically performing this
|
266 |
+
conveying of source, or (2) access to copy the
|
267 |
+
Corresponding Source from a network server at no charge.
|
268 |
+
|
269 |
+
c) Convey individual copies of the object code with a copy of the
|
270 |
+
written offer to provide the Corresponding Source. This
|
271 |
+
alternative is allowed only occasionally and noncommercially, and
|
272 |
+
only if you received the object code with such an offer, in accord
|
273 |
+
with subsection 6b.
|
274 |
+
|
275 |
+
d) Convey the object code by offering access from a designated
|
276 |
+
place (gratis or for a charge), and offer equivalent access to the
|
277 |
+
Corresponding Source in the same way through the same place at no
|
278 |
+
further charge. You need not require recipients to copy the
|
279 |
+
Corresponding Source along with the object code. If the place to
|
280 |
+
copy the object code is a network server, the Corresponding Source
|
281 |
+
may be on a different server (operated by you or a third party)
|
282 |
+
that supports equivalent copying facilities, provided you maintain
|
283 |
+
clear directions next to the object code saying where to find the
|
284 |
+
Corresponding Source. Regardless of what server hosts the
|
285 |
+
Corresponding Source, you remain obligated to ensure that it is
|
286 |
+
available for as long as needed to satisfy these requirements.
|
287 |
+
|
288 |
+
e) Convey the object code using peer-to-peer transmission, provided
|
289 |
+
you inform other peers where the object code and Corresponding
|
290 |
+
Source of the work are being offered to the general public at no
|
291 |
+
charge under subsection 6d.
|
292 |
+
|
293 |
+
A separable portion of the object code, whose source code is excluded
|
294 |
+
from the Corresponding Source as a System Library, need not be
|
295 |
+
included in conveying the object code work.
|
296 |
+
|
297 |
+
A "User Product" is either (1) a "consumer product", which means any
|
298 |
+
tangible personal property which is normally used for personal, family,
|
299 |
+
or household purposes, or (2) anything designed or sold for incorporation
|
300 |
+
into a dwelling. In determining whether a product is a consumer product,
|
301 |
+
doubtful cases shall be resolved in favor of coverage. For a particular
|
302 |
+
product received by a particular user, "normally used" refers to a
|
303 |
+
typical or common use of that class of product, regardless of the status
|
304 |
+
of the particular user or of the way in which the particular user
|
305 |
+
actually uses, or expects or is expected to use, the product. A product
|
306 |
+
is a consumer product regardless of whether the product has substantial
|
307 |
+
commercial, industrial or non-consumer uses, unless such uses represent
|
308 |
+
the only significant mode of use of the product.
|
309 |
+
|
310 |
+
"Installation Information" for a User Product means any methods,
|
311 |
+
procedures, authorization keys, or other information required to install
|
312 |
+
and execute modified versions of a covered work in that User Product from
|
313 |
+
a modified version of its Corresponding Source. The information must
|
314 |
+
suffice to ensure that the continued functioning of the modified object
|
315 |
+
code is in no case prevented or interfered with solely because
|
316 |
+
modification has been made.
|
317 |
+
|
318 |
+
If you convey an object code work under this section in, or with, or
|
319 |
+
specifically for use in, a User Product, and the conveying occurs as
|
320 |
+
part of a transaction in which the right of possession and use of the
|
321 |
+
User Product is transferred to the recipient in perpetuity or for a
|
322 |
+
fixed term (regardless of how the transaction is characterized), the
|
323 |
+
Corresponding Source conveyed under this section must be accompanied
|
324 |
+
by the Installation Information. But this requirement does not apply
|
325 |
+
if neither you nor any third party retains the ability to install
|
326 |
+
modified object code on the User Product (for example, the work has
|
327 |
+
been installed in ROM).
|
328 |
+
|
329 |
+
The requirement to provide Installation Information does not include a
|
330 |
+
requirement to continue to provide support service, warranty, or updates
|
331 |
+
for a work that has been modified or installed by the recipient, or for
|
332 |
+
the User Product in which it has been modified or installed. Access to a
|
333 |
+
network may be denied when the modification itself materially and
|
334 |
+
adversely affects the operation of the network or violates the rules and
|
335 |
+
protocols for communication across the network.
|
336 |
+
|
337 |
+
Corresponding Source conveyed, and Installation Information provided,
|
338 |
+
in accord with this section must be in a format that is publicly
|
339 |
+
documented (and with an implementation available to the public in
|
340 |
+
source code form), and must require no special password or key for
|
341 |
+
unpacking, reading or copying.
|
342 |
+
|
343 |
+
7. Additional Terms.
|
344 |
+
|
345 |
+
"Additional permissions" are terms that supplement the terms of this
|
346 |
+
License by making exceptions from one or more of its conditions.
|
347 |
+
Additional permissions that are applicable to the entire Program shall
|
348 |
+
be treated as though they were included in this License, to the extent
|
349 |
+
that they are valid under applicable law. If additional permissions
|
350 |
+
apply only to part of the Program, that part may be used separately
|
351 |
+
under those permissions, but the entire Program remains governed by
|
352 |
+
this License without regard to the additional permissions.
|
353 |
+
|
354 |
+
When you convey a copy of a covered work, you may at your option
|
355 |
+
remove any additional permissions from that copy, or from any part of
|
356 |
+
it. (Additional permissions may be written to require their own
|
357 |
+
removal in certain cases when you modify the work.) You may place
|
358 |
+
additional permissions on material, added by you to a covered work,
|
359 |
+
for which you have or can give appropriate copyright permission.
|
360 |
+
|
361 |
+
Notwithstanding any other provision of this License, for material you
|
362 |
+
add to a covered work, you may (if authorized by the copyright holders of
|
363 |
+
that material) supplement the terms of this License with terms:
|
364 |
+
|
365 |
+
a) Disclaiming warranty or limiting liability differently from the
|
366 |
+
terms of sections 15 and 16 of this License; or
|
367 |
+
|
368 |
+
b) Requiring preservation of specified reasonable legal notices or
|
369 |
+
author attributions in that material or in the Appropriate Legal
|
370 |
+
Notices displayed by works containing it; or
|
371 |
+
|
372 |
+
c) Prohibiting misrepresentation of the origin of that material, or
|
373 |
+
requiring that modified versions of such material be marked in
|
374 |
+
reasonable ways as different from the original version; or
|
375 |
+
|
376 |
+
d) Limiting the use for publicity purposes of names of licensors or
|
377 |
+
authors of the material; or
|
378 |
+
|
379 |
+
e) Declining to grant rights under trademark law for use of some
|
380 |
+
trade names, trademarks, or service marks; or
|
381 |
+
|
382 |
+
f) Requiring indemnification of licensors and authors of that
|
383 |
+
material by anyone who conveys the material (or modified versions of
|
384 |
+
it) with contractual assumptions of liability to the recipient, for
|
385 |
+
any liability that these contractual assumptions directly impose on
|
386 |
+
those licensors and authors.
|
387 |
+
|
388 |
+
All other non-permissive additional terms are considered "further
|
389 |
+
restrictions" within the meaning of section 10. If the Program as you
|
390 |
+
received it, or any part of it, contains a notice stating that it is
|
391 |
+
governed by this License along with a term that is a further
|
392 |
+
restriction, you may remove that term. If a license document contains
|
393 |
+
a further restriction but permits relicensing or conveying under this
|
394 |
+
License, you may add to a covered work material governed by the terms
|
395 |
+
of that license document, provided that the further restriction does
|
396 |
+
not survive such relicensing or conveying.
|
397 |
+
|
398 |
+
If you add terms to a covered work in accord with this section, you
|
399 |
+
must place, in the relevant source files, a statement of the
|
400 |
+
additional terms that apply to those files, or a notice indicating
|
401 |
+
where to find the applicable terms.
|
402 |
+
|
403 |
+
Additional terms, permissive or non-permissive, may be stated in the
|
404 |
+
form of a separately written license, or stated as exceptions;
|
405 |
+
the above requirements apply either way.
|
406 |
+
|
407 |
+
8. Termination.
|
408 |
+
|
409 |
+
You may not propagate or modify a covered work except as expressly
|
410 |
+
provided under this License. Any attempt otherwise to propagate or
|
411 |
+
modify it is void, and will automatically terminate your rights under
|
412 |
+
this License (including any patent licenses granted under the third
|
413 |
+
paragraph of section 11).
|
414 |
+
|
415 |
+
However, if you cease all violation of this License, then your
|
416 |
+
license from a particular copyright holder is reinstated (a)
|
417 |
+
provisionally, unless and until the copyright holder explicitly and
|
418 |
+
finally terminates your license, and (b) permanently, if the copyright
|
419 |
+
holder fails to notify you of the violation by some reasonable means
|
420 |
+
prior to 60 days after the cessation.
|
421 |
+
|
422 |
+
Moreover, your license from a particular copyright holder is
|
423 |
+
reinstated permanently if the copyright holder notifies you of the
|
424 |
+
violation by some reasonable means, this is the first time you have
|
425 |
+
received notice of violation of this License (for any work) from that
|
426 |
+
copyright holder, and you cure the violation prior to 30 days after
|
427 |
+
your receipt of the notice.
|
428 |
+
|
429 |
+
Termination of your rights under this section does not terminate the
|
430 |
+
licenses of parties who have received copies or rights from you under
|
431 |
+
this License. If your rights have been terminated and not permanently
|
432 |
+
reinstated, you do not qualify to receive new licenses for the same
|
433 |
+
material under section 10.
|
434 |
+
|
435 |
+
9. Acceptance Not Required for Having Copies.
|
436 |
+
|
437 |
+
You are not required to accept this License in order to receive or
|
438 |
+
run a copy of the Program. Ancillary propagation of a covered work
|
439 |
+
occurring solely as a consequence of using peer-to-peer transmission
|
440 |
+
to receive a copy likewise does not require acceptance. However,
|
441 |
+
nothing other than this License grants you permission to propagate or
|
442 |
+
modify any covered work. These actions infringe copyright if you do
|
443 |
+
not accept this License. Therefore, by modifying or propagating a
|
444 |
+
covered work, you indicate your acceptance of this License to do so.
|
445 |
+
|
446 |
+
10. Automatic Licensing of Downstream Recipients.
|
447 |
+
|
448 |
+
Each time you convey a covered work, the recipient automatically
|
449 |
+
receives a license from the original licensors, to run, modify and
|
450 |
+
propagate that work, subject to this License. You are not responsible
|
451 |
+
for enforcing compliance by third parties with this License.
|
452 |
+
|
453 |
+
An "entity transaction" is a transaction transferring control of an
|
454 |
+
organization, or substantially all assets of one, or subdividing an
|
455 |
+
organization, or merging organizations. If propagation of a covered
|
456 |
+
work results from an entity transaction, each party to that
|
457 |
+
transaction who receives a copy of the work also receives whatever
|
458 |
+
licenses to the work the party's predecessor in interest had or could
|
459 |
+
give under the previous paragraph, plus a right to possession of the
|
460 |
+
Corresponding Source of the work from the predecessor in interest, if
|
461 |
+
the predecessor has it or can get it with reasonable efforts.
|
462 |
+
|
463 |
+
You may not impose any further restrictions on the exercise of the
|
464 |
+
rights granted or affirmed under this License. For example, you may
|
465 |
+
not impose a license fee, royalty, or other charge for exercise of
|
466 |
+
rights granted under this License, and you may not initiate litigation
|
467 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
468 |
+
any patent claim is infringed by making, using, selling, offering for
|
469 |
+
sale, or importing the Program or any portion of it.
|
470 |
+
|
471 |
+
11. Patents.
|
472 |
+
|
473 |
+
A "contributor" is a copyright holder who authorizes use under this
|
474 |
+
License of the Program or a work on which the Program is based. The
|
475 |
+
work thus licensed is called the contributor's "contributor version".
|
476 |
+
|
477 |
+
A contributor's "essential patent claims" are all patent claims
|
478 |
+
owned or controlled by the contributor, whether already acquired or
|
479 |
+
hereafter acquired, that would be infringed by some manner, permitted
|
480 |
+
by this License, of making, using, or selling its contributor version,
|
481 |
+
but do not include claims that would be infringed only as a
|
482 |
+
consequence of further modification of the contributor version. For
|
483 |
+
purposes of this definition, "control" includes the right to grant
|
484 |
+
patent sublicenses in a manner consistent with the requirements of
|
485 |
+
this License.
|
486 |
+
|
487 |
+
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
488 |
+
patent license under the contributor's essential patent claims, to
|
489 |
+
make, use, sell, offer for sale, import and otherwise run, modify and
|
490 |
+
propagate the contents of its contributor version.
|
491 |
+
|
492 |
+
In the following three paragraphs, a "patent license" is any express
|
493 |
+
agreement or commitment, however denominated, not to enforce a patent
|
494 |
+
(such as an express permission to practice a patent or covenant not to
|
495 |
+
sue for patent infringement). To "grant" such a patent license to a
|
496 |
+
party means to make such an agreement or commitment not to enforce a
|
497 |
+
patent against the party.
|
498 |
+
|
499 |
+
If you convey a covered work, knowingly relying on a patent license,
|
500 |
+
and the Corresponding Source of the work is not available for anyone
|
501 |
+
to copy, free of charge and under the terms of this License, through a
|
502 |
+
publicly available network server or other readily accessible means,
|
503 |
+
then you must either (1) cause the Corresponding Source to be so
|
504 |
+
available, or (2) arrange to deprive yourself of the benefit of the
|
505 |
+
patent license for this particular work, or (3) arrange, in a manner
|
506 |
+
consistent with the requirements of this License, to extend the patent
|
507 |
+
license to downstream recipients. "Knowingly relying" means you have
|
508 |
+
actual knowledge that, but for the patent license, your conveying the
|
509 |
+
covered work in a country, or your recipient's use of the covered work
|
510 |
+
in a country, would infringe one or more identifiable patents in that
|
511 |
+
country that you have reason to believe are valid.
|
512 |
+
|
513 |
+
If, pursuant to or in connection with a single transaction or
|
514 |
+
arrangement, you convey, or propagate by procuring conveyance of, a
|
515 |
+
covered work, and grant a patent license to some of the parties
|
516 |
+
receiving the covered work authorizing them to use, propagate, modify
|
517 |
+
or convey a specific copy of the covered work, then the patent license
|
518 |
+
you grant is automatically extended to all recipients of the covered
|
519 |
+
work and works based on it.
|
520 |
+
|
521 |
+
A patent license is "discriminatory" if it does not include within
|
522 |
+
the scope of its coverage, prohibits the exercise of, or is
|
523 |
+
conditioned on the non-exercise of one or more of the rights that are
|
524 |
+
specifically granted under this License. You may not convey a covered
|
525 |
+
work if you are a party to an arrangement with a third party that is
|
526 |
+
in the business of distributing software, under which you make payment
|
527 |
+
to the third party based on the extent of your activity of conveying
|
528 |
+
the work, and under which the third party grants, to any of the
|
529 |
+
parties who would receive the covered work from you, a discriminatory
|
530 |
+
patent license (a) in connection with copies of the covered work
|
531 |
+
conveyed by you (or copies made from those copies), or (b) primarily
|
532 |
+
for and in connection with specific products or compilations that
|
533 |
+
contain the covered work, unless you entered into that arrangement,
|
534 |
+
or that patent license was granted, prior to 28 March 2007.
|
535 |
+
|
536 |
+
Nothing in this License shall be construed as excluding or limiting
|
537 |
+
any implied license or other defenses to infringement that may
|
538 |
+
otherwise be available to you under applicable patent law.
|
539 |
+
|
540 |
+
12. No Surrender of Others' Freedom.
|
541 |
+
|
542 |
+
If conditions are imposed on you (whether by court order, agreement or
|
543 |
+
otherwise) that contradict the conditions of this License, they do not
|
544 |
+
excuse you from the conditions of this License. If you cannot convey a
|
545 |
+
covered work so as to satisfy simultaneously your obligations under this
|
546 |
+
License and any other pertinent obligations, then as a consequence you may
|
547 |
+
not convey it at all. For example, if you agree to terms that obligate you
|
548 |
+
to collect a royalty for further conveying from those to whom you convey
|
549 |
+
the Program, the only way you could satisfy both those terms and this
|
550 |
+
License would be to refrain entirely from conveying the Program.
|
551 |
+
|
552 |
+
13. Use with the GNU Affero General Public License.
|
553 |
+
|
554 |
+
Notwithstanding any other provision of this License, you have
|
555 |
+
permission to link or combine any covered work with a work licensed
|
556 |
+
under version 3 of the GNU Affero General Public License into a single
|
557 |
+
combined work, and to convey the resulting work. The terms of this
|
558 |
+
License will continue to apply to the part which is the covered work,
|
559 |
+
but the special requirements of the GNU Affero General Public License,
|
560 |
+
section 13, concerning interaction through a network will apply to the
|
561 |
+
combination as such.
|
562 |
+
|
563 |
+
14. Revised Versions of this License.
|
564 |
+
|
565 |
+
The Free Software Foundation may publish revised and/or new versions of
|
566 |
+
the GNU General Public License from time to time. Such new versions will
|
567 |
+
be similar in spirit to the present version, but may differ in detail to
|
568 |
+
address new problems or concerns.
|
569 |
+
|
570 |
+
Each version is given a distinguishing version number. If the
|
571 |
+
Program specifies that a certain numbered version of the GNU General
|
572 |
+
Public License "or any later version" applies to it, you have the
|
573 |
+
option of following the terms and conditions either of that numbered
|
574 |
+
version or of any later version published by the Free Software
|
575 |
+
Foundation. If the Program does not specify a version number of the
|
576 |
+
GNU General Public License, you may choose any version ever published
|
577 |
+
by the Free Software Foundation.
|
578 |
+
|
579 |
+
If the Program specifies that a proxy can decide which future
|
580 |
+
versions of the GNU General Public License can be used, that proxy's
|
581 |
+
public statement of acceptance of a version permanently authorizes you
|
582 |
+
to choose that version for the Program.
|
583 |
+
|
584 |
+
Later license versions may give you additional or different
|
585 |
+
permissions. However, no additional obligations are imposed on any
|
586 |
+
author or copyright holder as a result of your choosing to follow a
|
587 |
+
later version.
|
588 |
+
|
589 |
+
15. Disclaimer of Warranty.
|
590 |
+
|
591 |
+
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
592 |
+
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
593 |
+
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
594 |
+
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
595 |
+
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
596 |
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
597 |
+
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
598 |
+
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
599 |
+
|
600 |
+
16. Limitation of Liability.
|
601 |
+
|
602 |
+
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
603 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
604 |
+
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
605 |
+
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
606 |
+
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
607 |
+
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
608 |
+
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
609 |
+
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
610 |
+
SUCH DAMAGES.
|
611 |
+
|
612 |
+
17. Interpretation of Sections 15 and 16.
|
613 |
+
|
614 |
+
If the disclaimer of warranty and limitation of liability provided
|
615 |
+
above cannot be given local legal effect according to their terms,
|
616 |
+
reviewing courts shall apply local law that most closely approximates
|
617 |
+
an absolute waiver of all civil liability in connection with the
|
618 |
+
Program, unless a warranty or assumption of liability accompanies a
|
619 |
+
copy of the Program in return for a fee.
|
620 |
+
|
621 |
+
END OF TERMS AND CONDITIONS
|
622 |
+
|
623 |
+
How to Apply These Terms to Your New Programs
|
624 |
+
|
625 |
+
If you develop a new program, and you want it to be of the greatest
|
626 |
+
possible use to the public, the best way to achieve this is to make it
|
627 |
+
free software which everyone can redistribute and change under these terms.
|
628 |
+
|
629 |
+
To do so, attach the following notices to the program. It is safest
|
630 |
+
to attach them to the start of each source file to most effectively
|
631 |
+
state the exclusion of warranty; and each file should have at least
|
632 |
+
the "copyright" line and a pointer to where the full notice is found.
|
633 |
+
|
634 |
+
<one line to give the program's name and a brief idea of what it does.>
|
635 |
+
Copyright (C) <year> <name of author>
|
636 |
+
|
637 |
+
This program is free software: you can redistribute it and/or modify
|
638 |
+
it under the terms of the GNU General Public License as published by
|
639 |
+
the Free Software Foundation, either version 3 of the License, or
|
640 |
+
(at your option) any later version.
|
641 |
+
|
642 |
+
This program is distributed in the hope that it will be useful,
|
643 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
644 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
645 |
+
GNU General Public License for more details.
|
646 |
+
|
647 |
+
You should have received a copy of the GNU General Public License
|
648 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
649 |
+
|
650 |
+
Also add information on how to contact you by electronic and paper mail.
|
651 |
+
|
652 |
+
If the program does terminal interaction, make it output a short
|
653 |
+
notice like this when it starts in an interactive mode:
|
654 |
+
|
655 |
+
<program> Copyright (C) <year> <name of author>
|
656 |
+
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
657 |
+
This is free software, and you are welcome to redistribute it
|
658 |
+
under certain conditions; type `show c' for details.
|
659 |
+
|
660 |
+
The hypothetical commands `show w' and `show c' should show the appropriate
|
661 |
+
parts of the General Public License. Of course, your program's commands
|
662 |
+
might be different; for a GUI interface, you would use an "about box".
|
663 |
+
|
664 |
+
You should also get your employer (if you work as a programmer) or school,
|
665 |
+
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
666 |
+
For more information on this, and how to apply and follow the GNU GPL, see
|
667 |
+
<https://www.gnu.org/licenses/>.
|
668 |
+
|
669 |
+
The GNU General Public License does not permit incorporating your program
|
670 |
+
into proprietary programs. If your program is a subroutine library, you
|
671 |
+
may consider it more useful to permit linking proprietary applications with
|
672 |
+
the library. If this is what you want to do, use the GNU Lesser General
|
673 |
+
Public License instead of this License. But first, please read
|
674 |
+
<https://www.gnu.org/licenses/why-not-lgpl.html>.
|
training/dataset/library/README.md
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Face-X-ray
|
2 |
+
The author's unofficial PyTorch re-implementation of Face Xray
|
3 |
+
|
4 |
+
This repo contains code for the BI data generation pipeline from [Face X-ray for More General Face Forgery Detection](https://arxiv.org/abs/1912.13458) by Lingzhi Li, Jianmin Bao, Ting Zhang, Hao Yang, Dong Chen, Fang Wen, Baining Guo.
|
5 |
+
|
6 |
+
# Usage
|
7 |
+
|
8 |
+
Just run bi_online_generation.py and you can get the following result. which is describe at Figure.5 in the paper.
|
9 |
+
|
10 |
+

|
11 |
+
|
12 |
+
To get the whole BI dataset, you will need crop all the face and compute the landmarks as describe in the code.
|
training/dataset/library/all_in_one.jpg
ADDED
![]() |
training/dataset/library/bi_online_generation.py
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dlib
|
2 |
+
from skimage import io
|
3 |
+
from skimage import transform as sktransform
|
4 |
+
import numpy as np
|
5 |
+
from matplotlib import pyplot as plt
|
6 |
+
import json
|
7 |
+
import os
|
8 |
+
import random
|
9 |
+
from PIL import Image
|
10 |
+
from imgaug import augmenters as iaa
|
11 |
+
from .DeepFakeMask import dfl_full,facehull,components,extended
|
12 |
+
import cv2
|
13 |
+
import tqdm
|
14 |
+
|
15 |
+
def name_resolve(path):
|
16 |
+
name = os.path.splitext(os.path.basename(path))[0]
|
17 |
+
vid_id, frame_id = name.split('_')[0:2]
|
18 |
+
return vid_id, frame_id
|
19 |
+
|
20 |
+
def total_euclidean_distance(a,b):
|
21 |
+
assert len(a.shape) == 2
|
22 |
+
return np.sum(np.linalg.norm(a-b,axis=1))
|
23 |
+
|
24 |
+
def random_get_hull(landmark,img1,hull_type):
|
25 |
+
if hull_type == 0:
|
26 |
+
mask = dfl_full(landmarks=landmark.astype('int32'),face=img1, channels=3).mask
|
27 |
+
return mask/255
|
28 |
+
elif hull_type == 1:
|
29 |
+
mask = extended(landmarks=landmark.astype('int32'),face=img1, channels=3).mask
|
30 |
+
return mask/255
|
31 |
+
elif hull_type == 2:
|
32 |
+
mask = components(landmarks=landmark.astype('int32'),face=img1, channels=3).mask
|
33 |
+
return mask/255
|
34 |
+
elif hull_type == 3:
|
35 |
+
mask = facehull(landmarks=landmark.astype('int32'),face=img1, channels=3).mask
|
36 |
+
return mask/255
|
37 |
+
|
38 |
+
def random_erode_dilate(mask, ksize=None):
|
39 |
+
if random.random()>0.5:
|
40 |
+
if ksize is None:
|
41 |
+
ksize = random.randint(1,21)
|
42 |
+
if ksize % 2 == 0:
|
43 |
+
ksize += 1
|
44 |
+
mask = np.array(mask).astype(np.uint8)*255
|
45 |
+
kernel = np.ones((ksize,ksize),np.uint8)
|
46 |
+
mask = cv2.erode(mask,kernel,1)/255
|
47 |
+
else:
|
48 |
+
if ksize is None:
|
49 |
+
ksize = random.randint(1,5)
|
50 |
+
if ksize % 2 == 0:
|
51 |
+
ksize += 1
|
52 |
+
mask = np.array(mask).astype(np.uint8)*255
|
53 |
+
kernel = np.ones((ksize,ksize),np.uint8)
|
54 |
+
mask = cv2.dilate(mask,kernel,1)/255
|
55 |
+
return mask
|
56 |
+
|
57 |
+
|
58 |
+
# borrow from https://github.com/MarekKowalski/FaceSwap
|
59 |
+
def blendImages(src, dst, mask, featherAmount=0.2):
|
60 |
+
|
61 |
+
maskIndices = np.where(mask != 0)
|
62 |
+
|
63 |
+
src_mask = np.ones_like(mask)
|
64 |
+
dst_mask = np.zeros_like(mask)
|
65 |
+
|
66 |
+
maskPts = np.hstack((maskIndices[1][:, np.newaxis], maskIndices[0][:, np.newaxis]))
|
67 |
+
faceSize = np.max(maskPts, axis=0) - np.min(maskPts, axis=0)
|
68 |
+
featherAmount = featherAmount * np.max(faceSize)
|
69 |
+
|
70 |
+
hull = cv2.convexHull(maskPts)
|
71 |
+
dists = np.zeros(maskPts.shape[0])
|
72 |
+
for i in range(maskPts.shape[0]):
|
73 |
+
dists[i] = cv2.pointPolygonTest(hull, (maskPts[i, 0], maskPts[i, 1]), True)
|
74 |
+
|
75 |
+
weights = np.clip(dists / featherAmount, 0, 1)
|
76 |
+
|
77 |
+
composedImg = np.copy(dst)
|
78 |
+
composedImg[maskIndices[0], maskIndices[1]] = weights[:, np.newaxis] * src[maskIndices[0], maskIndices[1]] + (1 - weights[:, np.newaxis]) * dst[maskIndices[0], maskIndices[1]]
|
79 |
+
|
80 |
+
composedMask = np.copy(dst_mask)
|
81 |
+
composedMask[maskIndices[0], maskIndices[1]] = weights[:, np.newaxis] * src_mask[maskIndices[0], maskIndices[1]] + (
|
82 |
+
1 - weights[:, np.newaxis]) * dst_mask[maskIndices[0], maskIndices[1]]
|
83 |
+
|
84 |
+
return composedImg, composedMask
|
85 |
+
|
86 |
+
|
87 |
+
# borrow from https://github.com/MarekKowalski/FaceSwap
|
88 |
+
def colorTransfer(src, dst, mask):
|
89 |
+
transferredDst = np.copy(dst)
|
90 |
+
|
91 |
+
maskIndices = np.where(mask != 0)
|
92 |
+
|
93 |
+
|
94 |
+
maskedSrc = src[maskIndices[0], maskIndices[1]].astype(np.int32)
|
95 |
+
maskedDst = dst[maskIndices[0], maskIndices[1]].astype(np.int32)
|
96 |
+
|
97 |
+
meanSrc = np.mean(maskedSrc, axis=0)
|
98 |
+
meanDst = np.mean(maskedDst, axis=0)
|
99 |
+
|
100 |
+
maskedDst = maskedDst - meanDst
|
101 |
+
maskedDst = maskedDst + meanSrc
|
102 |
+
maskedDst = np.clip(maskedDst, 0, 255)
|
103 |
+
|
104 |
+
transferredDst[maskIndices[0], maskIndices[1]] = maskedDst
|
105 |
+
|
106 |
+
return transferredDst
|
107 |
+
|
108 |
+
class BIOnlineGeneration():
|
109 |
+
def __init__(self):
|
110 |
+
with open('precomuted_landmarks.json', 'r') as f:
|
111 |
+
self.landmarks_record = json.load(f)
|
112 |
+
for k,v in self.landmarks_record.items():
|
113 |
+
self.landmarks_record[k] = np.array(v)
|
114 |
+
# extract all frame from all video in the name of {videoid}_{frameid}
|
115 |
+
self.data_list = [
|
116 |
+
'000_0000.png',
|
117 |
+
'001_0000.png'
|
118 |
+
] * 10000
|
119 |
+
|
120 |
+
# predefine mask distortion
|
121 |
+
self.distortion = iaa.Sequential([iaa.PiecewiseAffine(scale=(0.01, 0.15))])
|
122 |
+
|
123 |
+
def gen_one_datapoint(self):
|
124 |
+
background_face_path = random.choice(self.data_list)
|
125 |
+
data_type = 'real' if random.randint(0,1) else 'fake'
|
126 |
+
if data_type == 'fake' :
|
127 |
+
face_img,mask = self.get_blended_face(background_face_path)
|
128 |
+
mask = ( 1 - mask ) * mask * 4
|
129 |
+
else:
|
130 |
+
face_img = io.imread(background_face_path)
|
131 |
+
mask = np.zeros((317, 317, 1))
|
132 |
+
|
133 |
+
# randomly downsample after BI pipeline
|
134 |
+
if random.randint(0,1):
|
135 |
+
aug_size = random.randint(64, 317)
|
136 |
+
face_img = Image.fromarray(face_img)
|
137 |
+
if random.randint(0,1):
|
138 |
+
face_img = face_img.resize((aug_size, aug_size), Image.BILINEAR)
|
139 |
+
else:
|
140 |
+
face_img = face_img.resize((aug_size, aug_size), Image.NEAREST)
|
141 |
+
face_img = face_img.resize((317, 317),Image.BILINEAR)
|
142 |
+
face_img = np.array(face_img)
|
143 |
+
|
144 |
+
# random jpeg compression after BI pipeline
|
145 |
+
if random.randint(0,1):
|
146 |
+
quality = random.randint(60, 100)
|
147 |
+
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), quality]
|
148 |
+
face_img_encode = cv2.imencode('.jpg', face_img, encode_param)[1]
|
149 |
+
face_img = cv2.imdecode(face_img_encode, cv2.IMREAD_COLOR)
|
150 |
+
|
151 |
+
face_img = face_img[60:317,30:287,:]
|
152 |
+
mask = mask[60:317,30:287,:]
|
153 |
+
|
154 |
+
# random flip
|
155 |
+
if random.randint(0,1):
|
156 |
+
face_img = np.flip(face_img,1)
|
157 |
+
mask = np.flip(mask,1)
|
158 |
+
|
159 |
+
return face_img,mask,data_type
|
160 |
+
|
161 |
+
def get_blended_face(self,background_face_path):
|
162 |
+
background_face = io.imread(background_face_path)
|
163 |
+
background_landmark = self.landmarks_record[background_face_path]
|
164 |
+
|
165 |
+
foreground_face_path = self.search_similar_face(background_landmark,background_face_path)
|
166 |
+
foreground_face = io.imread(foreground_face_path)
|
167 |
+
|
168 |
+
# down sample before blending
|
169 |
+
aug_size = random.randint(128,317)
|
170 |
+
background_landmark = background_landmark * (aug_size/317)
|
171 |
+
foreground_face = sktransform.resize(foreground_face,(aug_size,aug_size),preserve_range=True).astype(np.uint8)
|
172 |
+
background_face = sktransform.resize(background_face,(aug_size,aug_size),preserve_range=True).astype(np.uint8)
|
173 |
+
|
174 |
+
# get random type of initial blending mask
|
175 |
+
mask = random_get_hull(background_landmark, background_face)
|
176 |
+
|
177 |
+
# random deform mask
|
178 |
+
mask = self.distortion.augment_image(mask)
|
179 |
+
mask = random_erode_dilate(mask)
|
180 |
+
|
181 |
+
# filte empty mask after deformation
|
182 |
+
if np.sum(mask) == 0 :
|
183 |
+
raise NotImplementedError
|
184 |
+
|
185 |
+
# apply color transfer
|
186 |
+
foreground_face = colorTransfer(background_face, foreground_face, mask*255)
|
187 |
+
|
188 |
+
# blend two face
|
189 |
+
blended_face, mask = blendImages(foreground_face, background_face, mask*255)
|
190 |
+
blended_face = blended_face.astype(np.uint8)
|
191 |
+
|
192 |
+
# resize back to default resolution
|
193 |
+
blended_face = sktransform.resize(blended_face,(317,317),preserve_range=True).astype(np.uint8)
|
194 |
+
mask = sktransform.resize(mask,(317,317),preserve_range=True)
|
195 |
+
mask = mask[:,:,0:1]
|
196 |
+
return blended_face,mask
|
197 |
+
|
198 |
+
def search_similar_face(self,this_landmark,background_face_path):
|
199 |
+
vid_id, frame_id = name_resolve(background_face_path)
|
200 |
+
min_dist = 99999999
|
201 |
+
|
202 |
+
# random sample 5000 frame from all frams:
|
203 |
+
all_candidate_path = random.sample( self.data_list, k=5000)
|
204 |
+
|
205 |
+
# filter all frame that comes from the same video as background face
|
206 |
+
all_candidate_path = filter(lambda k:name_resolve(k)[0] != vid_id, all_candidate_path)
|
207 |
+
all_candidate_path = list(all_candidate_path)
|
208 |
+
|
209 |
+
# loop throungh all candidates frame to get best match
|
210 |
+
for candidate_path in all_candidate_path:
|
211 |
+
candidate_landmark = self.landmarks_record[candidate_path].astype(np.float32)
|
212 |
+
candidate_distance = total_euclidean_distance(candidate_landmark, this_landmark)
|
213 |
+
if candidate_distance < min_dist:
|
214 |
+
min_dist = candidate_distance
|
215 |
+
min_path = candidate_path
|
216 |
+
|
217 |
+
return min_path
|
218 |
+
|
219 |
+
if __name__ == '__main__':
|
220 |
+
ds = BIOnlineGeneration()
|
221 |
+
from tqdm import tqdm
|
222 |
+
all_imgs = []
|
223 |
+
for _ in tqdm(range(50)):
|
224 |
+
img,mask,label = ds.gen_one_datapoint()
|
225 |
+
mask = np.repeat(mask,3,2)
|
226 |
+
mask = (mask*255).astype(np.uint8)
|
227 |
+
img_cat = np.concatenate([img,mask],1)
|
228 |
+
all_imgs.append(img_cat)
|
229 |
+
all_in_one = Image.new('RGB', (2570,2570))
|
230 |
+
|
231 |
+
for x in range(5):
|
232 |
+
for y in range(10):
|
233 |
+
idx = x*10+y
|
234 |
+
im = Image.fromarray(all_imgs[idx])
|
235 |
+
|
236 |
+
dx = x*514
|
237 |
+
dy = y*257
|
238 |
+
|
239 |
+
all_in_one.paste(im, (dx,dy))
|
240 |
+
|
241 |
+
all_in_one.save("all_in_one.jpg")
|
training/dataset/library/precomuted_landmarks.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"000_0000.png": [[56, 143], [57, 168], [61, 192], [67, 216], [76, 238], [93, 257], [112, 273], [133, 288], [156, 291], [178, 287], [198, 271], [219, 256], [236, 237], [246, 216], [250, 192], [252, 167], [252, 142], [69, 131], [84, 123], [102, 123], [119, 126], [137, 132], [178, 130], [195, 122], [213, 119], [230, 119], [244, 126], [158, 149], [158, 168], [158, 186], [159, 205], [140, 211], [148, 214], [158, 219], [168, 214], [176, 210], [91, 150], [102, 143], [116, 144], [127, 154], [115, 156], [101, 156], [188, 152], [199, 142], [213, 141], [224, 148], [214, 153], [201, 154], [117, 232], [134, 229], [148, 228], [158, 231], [168, 228], [181, 229], [195, 232], [182, 246], [169, 253], [158, 254], [147, 254], [132, 247], [125, 234], [147, 238], [158, 239], [168, 237], [188, 234], [168, 237], [158, 239], [147, 238]], "001_0000.png": [[56, 143], [57, 168], [61, 192], [67, 216], [76, 238], [93, 257], [112, 273], [133, 288], [156, 291], [178, 287], [198, 271], [219, 256], [236, 237], [246, 216], [250, 192], [252, 167], [252, 142], [69, 131], [84, 123], [102, 123], [119, 126], [137, 132], [178, 130], [195, 122], [213, 119], [230, 119], [244, 126], [158, 149], [158, 168], [158, 186], [159, 205], [140, 211], [148, 214], [158, 219], [168, 214], [176, 210], [91, 150], [102, 143], [116, 144], [127, 154], [115, 156], [101, 156], [188, 152], [199, 142], [213, 141], [224, 148], [214, 153], [201, 154], [117, 232], [134, 229], [148, 228], [158, 231], [168, 228], [181, 229], [195, 232], [182, 246], [169, 253], [158, 254], [147, 254], [132, 247], [125, 234], [147, 238], [158, 239], [168, 237], [188, 234], [168, 237], [158, 239], [147, 238]]}
|
training/dataset/lrl_dataset.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
current_file_path = os.path.abspath(__file__)
|
4 |
+
parent_dir = os.path.dirname(os.path.dirname(current_file_path))
|
5 |
+
project_root_dir = os.path.dirname(parent_dir)
|
6 |
+
sys.path.append(parent_dir)
|
7 |
+
sys.path.append(project_root_dir)
|
8 |
+
|
9 |
+
import cv2
|
10 |
+
import random
|
11 |
+
import yaml
|
12 |
+
import torch
|
13 |
+
import numpy as np
|
14 |
+
from copy import deepcopy
|
15 |
+
import albumentations as A
|
16 |
+
from .abstract_dataset import DeepfakeAbstractBaseDataset
|
17 |
+
from PIL import Image
|
18 |
+
|
19 |
+
c=0
|
20 |
+
|
21 |
+
class LRLDataset(DeepfakeAbstractBaseDataset):
|
22 |
+
def __init__(self, config=None, mode='train'):
|
23 |
+
super().__init__(config, mode)
|
24 |
+
global c
|
25 |
+
c=config
|
26 |
+
|
27 |
+
def multi_pass_filter(self, img, r1=0.33, r2=0.66):
|
28 |
+
rows, cols = img.shape
|
29 |
+
k = cols / rows
|
30 |
+
|
31 |
+
mask = np.zeros((rows, cols), np.uint8)
|
32 |
+
x, y = np.ogrid[:rows, :cols]
|
33 |
+
mask_area = (k * x + y < r1 * cols)
|
34 |
+
mask[mask_area] = 1
|
35 |
+
low_mask = mask
|
36 |
+
|
37 |
+
mask = np.ones((rows, cols), np.uint8)
|
38 |
+
x, y = np.ogrid[:rows, :cols]
|
39 |
+
mask_area = (k * x + y < r2 * cols)
|
40 |
+
mask[mask_area] = 0
|
41 |
+
high_mask = mask
|
42 |
+
|
43 |
+
mask1 = np.zeros((rows, cols), np.uint8)
|
44 |
+
mask1[low_mask == 0] = 1
|
45 |
+
mask2 = np.zeros((rows, cols), np.uint8)
|
46 |
+
mask2[high_mask == 0] = 1
|
47 |
+
mid_mask = mask1 * mask2
|
48 |
+
|
49 |
+
return low_mask, mid_mask, high_mask
|
50 |
+
|
51 |
+
def image2dct(self,img):
|
52 |
+
img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
53 |
+
img_gray = np.float32(img_gray)
|
54 |
+
img_dct = cv2.dct(img_gray)
|
55 |
+
# img_dct = np.log(np.abs(img_dct)+1e-6)
|
56 |
+
|
57 |
+
low_mask, mid_mask, high_mask = self.multi_pass_filter(img_dct, r1=0.33, r2=0.33)
|
58 |
+
img_dct_filterd = high_mask * img_dct
|
59 |
+
img_idct = cv2.idct(img_dct_filterd)
|
60 |
+
|
61 |
+
return img_idct
|
62 |
+
|
63 |
+
def __getitem__(self, index):
|
64 |
+
image_trans, label, landmark_tensors, mask_trans = super().__getitem__(index, no_norm=True)
|
65 |
+
|
66 |
+
img_idct = self.image2dct(image_trans)
|
67 |
+
# normalize idct
|
68 |
+
img_idct = (img_idct / 255 - 0.5) / 0.5
|
69 |
+
# img_idct = img_idct[np.newaxis, ...]
|
70 |
+
|
71 |
+
# To tensor and normalize for fake and real images
|
72 |
+
image_trans = self.normalize(self.to_tensor(image_trans))
|
73 |
+
img_idct_trans = self.to_tensor(img_idct)
|
74 |
+
mask_trans = torch.from_numpy(mask_trans)
|
75 |
+
mask_trans = mask_trans.squeeze(2).permute(2, 0, 1)
|
76 |
+
mask_trans = torch.mean(mask_trans, dim=0, keepdim=True)
|
77 |
+
return image_trans, label, img_idct_trans, mask_trans
|
78 |
+
|
79 |
+
def __len__(self):
|
80 |
+
return len(self.image_list)
|
81 |
+
|
82 |
+
|
83 |
+
@staticmethod
|
84 |
+
def collate_fn(batch):
|
85 |
+
"""
|
86 |
+
Collate a batch of data points.
|
87 |
+
|
88 |
+
Args:
|
89 |
+
batch (list): A list of tuples containing the image tensor and label tensor.
|
90 |
+
|
91 |
+
Returns:
|
92 |
+
A tuple containing the image tensor, the label tensor, the landmark tensor,
|
93 |
+
and the mask tensor.
|
94 |
+
"""
|
95 |
+
global c
|
96 |
+
images, labels, img_idct_trans, masks = zip(*batch)
|
97 |
+
# Stack the image, label, landmark, and mask tensors
|
98 |
+
images = torch.stack(images, dim=0)
|
99 |
+
labels = torch.LongTensor(labels)
|
100 |
+
masks = torch.stack(masks, dim=0)
|
101 |
+
img_idct_trans = torch.stack(img_idct_trans, dim=0)
|
102 |
+
|
103 |
+
data_dict = {
|
104 |
+
'image': images,
|
105 |
+
'label': labels,
|
106 |
+
'landmark': None,
|
107 |
+
'idct': img_idct_trans,
|
108 |
+
'mask': masks,
|
109 |
+
}
|
110 |
+
return data_dict
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
if __name__ == '__main__':
|
115 |
+
with open(r'H:\code\DeepfakeBench\training\config\detector\lrl_effnb4.yaml', 'r') as f:
|
116 |
+
config = yaml.safe_load(f)
|
117 |
+
with open(r'H:\code\DeepfakeBench\training\config\train_config.yaml', 'r') as f:
|
118 |
+
config2 = yaml.safe_load(f)
|
119 |
+
random.seed(config['manualSeed'])
|
120 |
+
torch.manual_seed(config['manualSeed'])
|
121 |
+
if config['cuda']:
|
122 |
+
torch.cuda.manual_seed_all(config['manualSeed'])
|
123 |
+
config2['data_manner'] = 'lmdb'
|
124 |
+
config['dataset_json_folder'] = 'preprocessing/dataset_json_v3'
|
125 |
+
config.update(config2)
|
126 |
+
train_set = LRLDataset(config=config, mode='train')
|
127 |
+
train_data_loader = \
|
128 |
+
torch.utils.data.DataLoader(
|
129 |
+
dataset=train_set,
|
130 |
+
batch_size=4,
|
131 |
+
shuffle=True,
|
132 |
+
num_workers=0,
|
133 |
+
collate_fn=train_set.collate_fn,
|
134 |
+
)
|
135 |
+
from tqdm import tqdm
|
136 |
+
for iteration, batch in enumerate(tqdm(train_data_loader)):
|
137 |
+
print(iteration)
|
138 |
+
if iteration > 10:
|
139 |
+
break
|
training/dataset/lsda_dataset.py
ADDED
@@ -0,0 +1,382 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
sys.path.append('.')
|
3 |
+
|
4 |
+
import os
|
5 |
+
import sys
|
6 |
+
import json
|
7 |
+
import math
|
8 |
+
import yaml
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import cv2
|
12 |
+
import random
|
13 |
+
from PIL import Image
|
14 |
+
|
15 |
+
import torch
|
16 |
+
from torch.autograd import Variable
|
17 |
+
from torch.utils import data
|
18 |
+
from torchvision import transforms as T
|
19 |
+
|
20 |
+
|
21 |
+
import skimage.draw
|
22 |
+
import albumentations as alb
|
23 |
+
from albumentations import Compose, RandomBrightnessContrast, \
|
24 |
+
HorizontalFlip, FancyPCA, HueSaturationValue, OneOf, ToGray, \
|
25 |
+
ShiftScaleRotate, ImageCompression, PadIfNeeded, GaussNoise, GaussianBlur, RandomResizedCrop
|
26 |
+
from torch.utils.data.sampler import Sampler
|
27 |
+
from .abstract_dataset import DeepfakeAbstractBaseDataset
|
28 |
+
|
29 |
+
|
30 |
+
private_path_prefix = '/home/zhaokangran/cvpr24/training'
|
31 |
+
|
32 |
+
fake_dict = {
|
33 |
+
'real': 0,
|
34 |
+
'Deepfakes': 1,
|
35 |
+
'Face2Face': 2,
|
36 |
+
'FaceSwap': 3,
|
37 |
+
'NeuralTextures': 4,
|
38 |
+
# 'Deepfakes_Face2Face': 5,
|
39 |
+
# 'Deepfakes_FaceSwap': 6,
|
40 |
+
# 'Deepfakes_NeuralTextures': 7,
|
41 |
+
# 'Deepfakes_real': 8,
|
42 |
+
# 'Face2Face_FaceSwap': 9,
|
43 |
+
# 'Face2Face_NeuralTextures': 10,
|
44 |
+
# 'Face2Face_real': 11,
|
45 |
+
# 'FaceSwap_NeuralTextures': 12,
|
46 |
+
# 'FaceSwap_real': 13,
|
47 |
+
# 'NeuralTextures_real': 14,
|
48 |
+
}
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
class RandomDownScale(alb.core.transforms_interface.ImageOnlyTransform):
|
53 |
+
def apply(self,img,**params):
|
54 |
+
return self.randomdownscale(img)
|
55 |
+
|
56 |
+
def randomdownscale(self,img):
|
57 |
+
keep_ratio=True
|
58 |
+
keep_input_shape=True
|
59 |
+
H,W,C=img.shape
|
60 |
+
ratio_list=[2,4]
|
61 |
+
r=ratio_list[np.random.randint(len(ratio_list))]
|
62 |
+
img_ds=cv2.resize(img,(int(W/r),int(H/r)),interpolation=cv2.INTER_NEAREST)
|
63 |
+
if keep_input_shape:
|
64 |
+
img_ds=cv2.resize(img_ds,(W,H),interpolation=cv2.INTER_LINEAR)
|
65 |
+
|
66 |
+
return img_ds
|
67 |
+
|
68 |
+
|
69 |
+
augmentation_methods = alb.Compose([
|
70 |
+
# alb.RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1,0.1), p=0.5),
|
71 |
+
# HorizontalFlip(p=0.5),
|
72 |
+
# RandomDownScale(p=0.5),
|
73 |
+
# alb.Sharpen(alpha=(0.2, 0.5), lightness=(0.5, 1.0), p=0.5),
|
74 |
+
alb.ImageCompression(quality_lower=40,quality_upper=100,p=0.5),
|
75 |
+
GaussianBlur(blur_limit=[3, 7], p=0.5)
|
76 |
+
], p=1.)
|
77 |
+
|
78 |
+
augmentation_methods2 = alb.Compose([
|
79 |
+
alb.RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1,0.1), p=0.5),
|
80 |
+
HorizontalFlip(p=0.5),
|
81 |
+
RandomDownScale(p=0.5),
|
82 |
+
alb.Sharpen(alpha=(0.2, 0.5), lightness=(0.5, 1.0), p=0.5),
|
83 |
+
alb.ImageCompression(quality_lower=40,quality_upper=100,p=0.5),
|
84 |
+
],
|
85 |
+
additional_targets={f'image1':'image', f'image2':'image', f'image3':'image', f'image4':'image'},
|
86 |
+
p=1.)
|
87 |
+
|
88 |
+
normalize = T.Normalize(mean=[0.5, 0.5, 0.5],
|
89 |
+
std =[0.5, 0.5, 0.5])
|
90 |
+
transforms1 = T.Compose([
|
91 |
+
T.ToTensor(),
|
92 |
+
normalize
|
93 |
+
])
|
94 |
+
|
95 |
+
#==========================================
|
96 |
+
|
97 |
+
def load_rgb(file_path, size=256):
|
98 |
+
assert os.path.exists(file_path), f"{file_path} is not exists"
|
99 |
+
img = cv2.imread(file_path)
|
100 |
+
if img is None:
|
101 |
+
raise ValueError('Img is None: {}'.format(file_path))
|
102 |
+
|
103 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
104 |
+
img = cv2.resize(img, (size, size), interpolation=cv2.INTER_CUBIC)
|
105 |
+
|
106 |
+
return Image.fromarray(np.array(img, dtype=np.uint8))
|
107 |
+
|
108 |
+
|
109 |
+
def load_mask(file_path, size=256):
|
110 |
+
mask = cv2.imread(file_path, 0)
|
111 |
+
if mask is None:
|
112 |
+
mask = np.zeros((size, size))
|
113 |
+
|
114 |
+
mask = cv2.resize(mask, (size, size))/255
|
115 |
+
mask = np.expand_dims(mask, axis=2)
|
116 |
+
return np.float32(mask)
|
117 |
+
|
118 |
+
|
119 |
+
def add_gaussian_noise(ins, mean=0, stddev=0.1):
|
120 |
+
noise = ins.data.new(ins.size()).normal_(mean, stddev)
|
121 |
+
return torch.clamp(ins + noise, -1, 1)
|
122 |
+
|
123 |
+
|
124 |
+
# class RandomBlur(object):
|
125 |
+
# """ Randomly blur an image
|
126 |
+
# """
|
127 |
+
# def __init__(self, ratio,)
|
128 |
+
|
129 |
+
# class RandomCompression(object):
|
130 |
+
# """ Randomly compress an image
|
131 |
+
# """
|
132 |
+
|
133 |
+
class CustomSampler(Sampler):
|
134 |
+
def __init__(self, num_groups=2*360, n_frame_per_vid=32, videos_per_group=5, batch_size=10):
|
135 |
+
self.num_groups = num_groups
|
136 |
+
self.n_frame_per_vid = n_frame_per_vid
|
137 |
+
self.videos_per_group = videos_per_group
|
138 |
+
self.batch_size = batch_size
|
139 |
+
assert self.batch_size % self.videos_per_group == 0, "Batch size should be a multiple of videos_per_group."
|
140 |
+
self.groups_per_batch = self.batch_size // self.videos_per_group
|
141 |
+
|
142 |
+
def __iter__(self):
|
143 |
+
group_indices = list(range(self.num_groups))
|
144 |
+
random.shuffle(group_indices)
|
145 |
+
|
146 |
+
# For each batch
|
147 |
+
for i in range(0, len(group_indices), self.groups_per_batch):
|
148 |
+
selected_groups = group_indices[i:i+self.groups_per_batch]
|
149 |
+
|
150 |
+
# For each group
|
151 |
+
for group in selected_groups:
|
152 |
+
frame_idx = random.randint(0, self.n_frame_per_vid - 1) # Random frame index for this group's videos
|
153 |
+
|
154 |
+
# Return the frame for each video in this group using the same frame_idx
|
155 |
+
for video_offset in range(self.videos_per_group):
|
156 |
+
yield group * self.videos_per_group * self.n_frame_per_vid + video_offset * self.n_frame_per_vid + frame_idx
|
157 |
+
|
158 |
+
def __len__(self):
|
159 |
+
return self.num_groups * self.videos_per_group # Total frames
|
160 |
+
|
161 |
+
|
162 |
+
|
163 |
+
class LSDADataset(DeepfakeAbstractBaseDataset):
|
164 |
+
|
165 |
+
on_3060 = "3060" in torch.cuda.get_device_name()
|
166 |
+
transfer_dict = {
|
167 |
+
'youtube':'FF-real',
|
168 |
+
'Deepfakes':'FF-DF',
|
169 |
+
'Face2Face':'FF-F2F',
|
170 |
+
'FaceSwap':'FF-FS',
|
171 |
+
'NeuralTextures':'FF-NT'
|
172 |
+
|
173 |
+
|
174 |
+
}
|
175 |
+
if on_3060:
|
176 |
+
data_root = r'F:\Datasets\rgb\FaceForensics++'
|
177 |
+
else:
|
178 |
+
data_root = r'./datasets/FaceForensics++'
|
179 |
+
data_list = {
|
180 |
+
'test': r'./datasets/FaceForensics++/test.json',
|
181 |
+
'train': r'./datasets/FaceForensics++/train.json',
|
182 |
+
'eval': r'./datasets/FaceForensics++/val.json'
|
183 |
+
}
|
184 |
+
|
185 |
+
def __init__(self, config=None, mode='train', with_dataset=['Deepfakes', 'Face2Face', 'FaceSwap', 'NeuralTextures']):
|
186 |
+
super().__init__(config, mode)
|
187 |
+
self.mode = mode
|
188 |
+
self.res = config['resolution']
|
189 |
+
self.fake_dict = fake_dict
|
190 |
+
# transform
|
191 |
+
self.normalize = T.Normalize(mean=config['mean'],
|
192 |
+
std =config['std'])
|
193 |
+
# data aug and transform
|
194 |
+
self.transforms1 = T.Compose([
|
195 |
+
T.ToTensor(),
|
196 |
+
self.normalize
|
197 |
+
])
|
198 |
+
self.img_lines = []
|
199 |
+
self.config=config
|
200 |
+
with open(self.config['dataset_json_folder']+'/FaceForensics++.json', 'r') as fd:
|
201 |
+
self.img_json = json.load(fd)
|
202 |
+
with open(self.data_list[mode], 'r') as fd:
|
203 |
+
data = json.load(fd)
|
204 |
+
img_lines = []
|
205 |
+
for pair in data:
|
206 |
+
r1, r2 = pair
|
207 |
+
step = 1
|
208 |
+
# collect a group with 1+len(fakes) videos, each video has self.frames[mode] frames。这里就是按同一个video这种顺序来存的,所以读的时候自然只要有了offset,就能对应的取了
|
209 |
+
#此外,这里面存的压根就不是路径,而是规范化的内容。
|
210 |
+
for i in range(0, config['frame_num'][mode], step):
|
211 |
+
# collect real data here(r1)
|
212 |
+
img_lines.append(('{}/{}'.format('youtube', r1), i, 0, mode))
|
213 |
+
|
214 |
+
for fake_d in with_dataset:
|
215 |
+
# collect fake data here(r1_r2 * 4)
|
216 |
+
for i in range(0, config['frame_num'][mode], step):
|
217 |
+
img_lines.append(
|
218 |
+
('{}/{}_{}'.format(fake_d, r1, r2), i, self.fake_dict[fake_d], mode))
|
219 |
+
|
220 |
+
for i in range(0, config['frame_num'][mode], step):
|
221 |
+
# collect real data here(r2)
|
222 |
+
img_lines.append(('{}/{}'.format('youtube', r2), i, 0, mode))
|
223 |
+
|
224 |
+
for fake_d in with_dataset:
|
225 |
+
# collect fake data here(r2_r1 * 4)
|
226 |
+
for i in range(0, config['frame_num'][mode], step):
|
227 |
+
img_lines.append(
|
228 |
+
('{}/{}_{}'.format(fake_d, r2, r1), i, self.fake_dict[fake_d], mode))
|
229 |
+
|
230 |
+
# 2*360 (groups) * 1+len(with_dataset) (videos in each group) * self.frames[mode] (frames in each video)
|
231 |
+
assert len(img_lines) == 2*len(data) * (1 + len(with_dataset)) * config['frame_num'][mode], "to match our custom sampler, the length should be 2*360*(1+len(with_dataset))*frames[mode]"
|
232 |
+
self.img_lines.extend(img_lines)
|
233 |
+
|
234 |
+
|
235 |
+
def get_ids_from_path(self, path):
|
236 |
+
parts = path.split('/')
|
237 |
+
try:
|
238 |
+
if 'youtube' in path:
|
239 |
+
return [int(parts[-1])]
|
240 |
+
else:
|
241 |
+
return list(map(int, parts[-1].split('_')))
|
242 |
+
except:
|
243 |
+
raise ValueError("wrong path: {}".format(path))
|
244 |
+
|
245 |
+
def load_image(self, name, idx):
|
246 |
+
instance_type, video_name = name.split('/')
|
247 |
+
#其实并没有完全对应,而只是保证在同一video的目标时间区间内的一帧
|
248 |
+
all_frames = self.img_json[self.data_root.split(os.path.sep)[-1]][self.transfer_dict[instance_type]]['train']['c23'][video_name]['frames']
|
249 |
+
img_path = all_frames[idx]
|
250 |
+
|
251 |
+
impath = img_path
|
252 |
+
img = self.load_rgb(impath)
|
253 |
+
return img
|
254 |
+
|
255 |
+
def __getitem__(self, index):
|
256 |
+
name, idx, label, mode = self.img_lines[index] #这个sampler的目的是不要取重复video的图。
|
257 |
+
label = int(label) # specific fake label from 1-4
|
258 |
+
|
259 |
+
#取img没什么好说的。然后在这里把规范化的img_lines转为实际路径。
|
260 |
+
try:
|
261 |
+
img = self.load_image(name, idx)
|
262 |
+
except Exception as e:
|
263 |
+
# 下面处理不太合适,取的不是预期的video_id/fake_method,影响后面的lsda。
|
264 |
+
# random_idx = random.randint(0, len(self.img_lines)-1)
|
265 |
+
# print(f'Error loading image {name} at index {idx} due to the loading error. Try another one at index {random_idx}')
|
266 |
+
# return self.__getitem__(random_idx)
|
267 |
+
|
268 |
+
#边界条件判断,取同video的。
|
269 |
+
if idx==0:
|
270 |
+
new_index = index+1
|
271 |
+
elif idx==31:
|
272 |
+
new_index = index-1
|
273 |
+
else:
|
274 |
+
new_index = index + random.choice([-1,1]) # 通过随机防止死递归
|
275 |
+
print(f'Error loading image {name} at index {idx} due to the loading error. Try another one at index {new_index}')
|
276 |
+
return self.__getitem__(new_index)
|
277 |
+
|
278 |
+
|
279 |
+
if self.mode=='train':
|
280 |
+
# do augmentation
|
281 |
+
img = np.asarray(img) # convert PIL to numpy
|
282 |
+
|
283 |
+
img = augmentation_methods2(image=img)['image']
|
284 |
+
img = Image.fromarray(np.array(img, dtype=np.uint8)) # covnert numpy to PIL
|
285 |
+
|
286 |
+
# transform with PIL as input
|
287 |
+
img = self.transforms1(img)
|
288 |
+
else:
|
289 |
+
raise ValueError("Not implemented yet")
|
290 |
+
|
291 |
+
return (img, label)
|
292 |
+
|
293 |
+
|
294 |
+
|
295 |
+
def __len__(self):
|
296 |
+
return len(self.img_lines)
|
297 |
+
|
298 |
+
|
299 |
+
|
300 |
+
@staticmethod
|
301 |
+
def collate_fn(batch):
|
302 |
+
# Unzip the batch into images and labels
|
303 |
+
images, labels = zip(*batch)
|
304 |
+
|
305 |
+
# images, labels = zip(batch['image'], batch['label'])
|
306 |
+
|
307 |
+
# image_list = []
|
308 |
+
|
309 |
+
# for i in range(len(images)//5):
|
310 |
+
|
311 |
+
# img = images[i*5:(i+1)*5]
|
312 |
+
|
313 |
+
# # do augmentation
|
314 |
+
# imgs_aug = augmentation_methods2(image=np.asarray(img[0]), image1=np.asarray(img[1]), image2=np.asarray(img[2]), image3=np.asarray(img[3]), image4=np.asarray(img[4]))
|
315 |
+
# for k in imgs_aug:
|
316 |
+
|
317 |
+
# img_aug = Image.fromarray(np.array(imgs_aug[k], dtype=np.uint8)) # covnert numpy to PIL
|
318 |
+
|
319 |
+
# # transform with PIL as input
|
320 |
+
# img_aug = transforms1(img_aug)
|
321 |
+
# image_list.append(img_aug)
|
322 |
+
|
323 |
+
# Stack the images and labels
|
324 |
+
images = torch.stack(images, dim=0) # Shape: (batch_size, c, h, w)
|
325 |
+
labels = torch.tensor(labels, dtype=torch.long)
|
326 |
+
|
327 |
+
bs, c, h, w = images.shape
|
328 |
+
|
329 |
+
# Assume videos_per_group is 5 in our case
|
330 |
+
videos_per_group = 5
|
331 |
+
num_groups = bs // videos_per_group
|
332 |
+
|
333 |
+
# Reshape to get the group dimension: (num_groups, videos_per_group, c, h, w)
|
334 |
+
images_grouped = images.view(num_groups, videos_per_group, c, h, w)
|
335 |
+
labels_grouped = labels.view(num_groups, videos_per_group)
|
336 |
+
|
337 |
+
valid_indices = []
|
338 |
+
for i, group in enumerate(labels_grouped):
|
339 |
+
if set(group.numpy().tolist()) == {0, 1, 2, 3, 4}:
|
340 |
+
valid_indices.append(i)
|
341 |
+
# elif set(group.numpy().tolist()) == {0, 1, 2, 3}:
|
342 |
+
# valid_indices.append(i)
|
343 |
+
# elif set(group.numpy().tolist()) == {0, 1, 2, 3, 4, 5}:
|
344 |
+
# valid_indices.append(i)
|
345 |
+
|
346 |
+
images_grouped = images_grouped[valid_indices]
|
347 |
+
labels_grouped = labels_grouped[valid_indices]
|
348 |
+
|
349 |
+
if not valid_indices:
|
350 |
+
raise ValueError("No valid groups found in this batch.")
|
351 |
+
|
352 |
+
# # Shuffle the video order within each group
|
353 |
+
# for i in range(num_groups):
|
354 |
+
# perm = torch.randperm(videos_per_group)
|
355 |
+
# images_grouped[i] = images_grouped[i, perm]
|
356 |
+
# labels_grouped[i] = labels_grouped[i, perm]
|
357 |
+
|
358 |
+
# # Flatten back to original shape but with shuffled video order
|
359 |
+
# images_shuffled = images_grouped.view(num_groups, videos_per_group, c, h, w)
|
360 |
+
# labels_shuffled = labels_grouped.view(bs)
|
361 |
+
|
362 |
+
return {'image': images_grouped, 'label': labels_grouped, 'mask': None, 'landmark': None}
|
363 |
+
|
364 |
+
|
365 |
+
if __name__ == '__main__':
|
366 |
+
with open('/data/home/zhiyuanyan/DeepfakeBench/training/config/detector/lsda.yaml', 'r') as f:
|
367 |
+
config = yaml.safe_load(f)
|
368 |
+
train_set = LSDADataset(config=config, mode='train')
|
369 |
+
custom_sampler = CustomSampler(num_groups=2*360, n_frame_per_vid=config['frame_num']['train'], batch_size=config['train_batchSize'], videos_per_group=5)
|
370 |
+
train_data_loader = \
|
371 |
+
torch.utils.data.DataLoader(
|
372 |
+
dataset=train_set,
|
373 |
+
batch_size=config['train_batchSize'],
|
374 |
+
num_workers=0,
|
375 |
+
sampler=custom_sampler,
|
376 |
+
collate_fn=train_set.collate_fn,
|
377 |
+
)
|
378 |
+
from tqdm import tqdm
|
379 |
+
for iteration, batch in enumerate(tqdm(train_data_loader)):
|
380 |
+
print(iteration)
|
381 |
+
if iteration > 10:
|
382 |
+
break
|
training/dataset/pair_dataset.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
# author: Zhiyuan Yan
|
3 |
+
# email: [email protected]
|
4 |
+
# date: 2023-03-30
|
5 |
+
|
6 |
+
The code is designed for scenarios such as disentanglement-based methods where it is necessary to ensure an equal number of positive and negative samples.
|
7 |
+
'''
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import random
|
11 |
+
import numpy as np
|
12 |
+
from dataset.abstract_dataset import DeepfakeAbstractBaseDataset
|
13 |
+
|
14 |
+
|
15 |
+
class pairDataset(DeepfakeAbstractBaseDataset):
|
16 |
+
def __init__(self, config=None, mode='train'):
|
17 |
+
super().__init__(config, mode)
|
18 |
+
|
19 |
+
# Get real and fake image lists
|
20 |
+
# Fix the label of real images to be 0 and fake images to be 1
|
21 |
+
self.fake_imglist = [(img, label, 1) for img, label in zip(self.image_list, self.label_list) if label != 0]
|
22 |
+
self.real_imglist = [(img, label, 0) for img, label in zip(self.image_list, self.label_list) if label == 0]
|
23 |
+
|
24 |
+
def __getitem__(self, index, norm=True):
|
25 |
+
# Get the fake and real image paths and labels
|
26 |
+
fake_image_path, fake_spe_label, fake_label = self.fake_imglist[index]
|
27 |
+
real_index = random.randint(0, len(self.real_imglist) - 1) # Randomly select a real image
|
28 |
+
real_image_path, real_spe_label, real_label = self.real_imglist[real_index]
|
29 |
+
|
30 |
+
# Get the mask and landmark paths for fake and real images
|
31 |
+
fake_mask_path = fake_image_path.replace('frames', 'masks')
|
32 |
+
fake_landmark_path = fake_image_path.replace('frames', 'landmarks').replace('.png', '.npy')
|
33 |
+
|
34 |
+
real_mask_path = real_image_path.replace('frames', 'masks')
|
35 |
+
real_landmark_path = real_image_path.replace('frames', 'landmarks').replace('.png', '.npy')
|
36 |
+
|
37 |
+
# Load the fake and real images
|
38 |
+
fake_image = self.load_rgb(fake_image_path)
|
39 |
+
real_image = self.load_rgb(real_image_path)
|
40 |
+
|
41 |
+
fake_image = np.array(fake_image) # Convert to numpy array for data augmentation
|
42 |
+
real_image = np.array(real_image) # Convert to numpy array for data augmentation
|
43 |
+
|
44 |
+
# Load mask and landmark (if needed) for fake and real images
|
45 |
+
if self.config['with_mask']:
|
46 |
+
fake_mask = self.load_mask(fake_mask_path)
|
47 |
+
real_mask = self.load_mask(real_mask_path)
|
48 |
+
else:
|
49 |
+
fake_mask, real_mask = None, None
|
50 |
+
|
51 |
+
if self.config['with_landmark']:
|
52 |
+
fake_landmarks = self.load_landmark(fake_landmark_path)
|
53 |
+
real_landmarks = self.load_landmark(real_landmark_path)
|
54 |
+
else:
|
55 |
+
fake_landmarks, real_landmarks = None, None
|
56 |
+
|
57 |
+
# Do transforms for fake and real images
|
58 |
+
fake_image_trans, fake_landmarks_trans, fake_mask_trans = self.data_aug(fake_image, fake_landmarks, fake_mask)
|
59 |
+
real_image_trans, real_landmarks_trans, real_mask_trans = self.data_aug(real_image, real_landmarks, real_mask)
|
60 |
+
|
61 |
+
if not norm:
|
62 |
+
return {"fake": (fake_image_trans, fake_label),
|
63 |
+
"real": (real_image_trans, real_label)}
|
64 |
+
|
65 |
+
# To tensor and normalize for fake and real images
|
66 |
+
fake_image_trans = self.normalize(self.to_tensor(fake_image_trans))
|
67 |
+
real_image_trans = self.normalize(self.to_tensor(real_image_trans))
|
68 |
+
|
69 |
+
# Convert landmarks and masks to tensors if they exist
|
70 |
+
if self.config['with_landmark']:
|
71 |
+
fake_landmarks_trans = torch.from_numpy(fake_landmarks_trans)
|
72 |
+
real_landmarks_trans = torch.from_numpy(real_landmarks_trans)
|
73 |
+
if self.config['with_mask']:
|
74 |
+
fake_mask_trans = torch.from_numpy(fake_mask_trans)
|
75 |
+
real_mask_trans = torch.from_numpy(real_mask_trans)
|
76 |
+
|
77 |
+
return {"fake": (fake_image_trans, fake_label, fake_spe_label, fake_landmarks_trans, fake_mask_trans),
|
78 |
+
"real": (real_image_trans, real_label, real_spe_label, real_landmarks_trans, real_mask_trans)}
|
79 |
+
|
80 |
+
def __len__(self):
|
81 |
+
return len(self.fake_imglist)
|
82 |
+
|
83 |
+
@staticmethod
|
84 |
+
def collate_fn(batch):
|
85 |
+
"""
|
86 |
+
Collate a batch of data points.
|
87 |
+
|
88 |
+
Args:
|
89 |
+
batch (list): A list of tuples containing the image tensor, the label tensor,
|
90 |
+
the landmark tensor, and the mask tensor.
|
91 |
+
|
92 |
+
Returns:
|
93 |
+
A tuple containing the image tensor, the label tensor, the landmark tensor,
|
94 |
+
and the mask tensor.
|
95 |
+
"""
|
96 |
+
# Separate the image, label, landmark, and mask tensors for fake and real data
|
97 |
+
fake_images, fake_labels, fake_spe_labels, fake_landmarks, fake_masks = zip(*[data["fake"] for data in batch])
|
98 |
+
real_images, real_labels, real_spe_labels, real_landmarks, real_masks = zip(*[data["real"] for data in batch])
|
99 |
+
|
100 |
+
# Stack the image, label, landmark, and mask tensors for fake and real data
|
101 |
+
fake_images = torch.stack(fake_images, dim=0)
|
102 |
+
fake_labels = torch.LongTensor(fake_labels)
|
103 |
+
fake_spe_labels = torch.LongTensor(fake_spe_labels)
|
104 |
+
real_images = torch.stack(real_images, dim=0)
|
105 |
+
real_labels = torch.LongTensor(real_labels)
|
106 |
+
real_spe_labels = torch.LongTensor(real_spe_labels)
|
107 |
+
|
108 |
+
# Special case for landmarks and masks if they are None
|
109 |
+
if fake_landmarks[0] is not None:
|
110 |
+
fake_landmarks = torch.stack(fake_landmarks, dim=0)
|
111 |
+
else:
|
112 |
+
fake_landmarks = None
|
113 |
+
if real_landmarks[0] is not None:
|
114 |
+
real_landmarks = torch.stack(real_landmarks, dim=0)
|
115 |
+
else:
|
116 |
+
real_landmarks = None
|
117 |
+
|
118 |
+
if fake_masks[0] is not None:
|
119 |
+
fake_masks = torch.stack(fake_masks, dim=0)
|
120 |
+
else:
|
121 |
+
fake_masks = None
|
122 |
+
if real_masks[0] is not None:
|
123 |
+
real_masks = torch.stack(real_masks, dim=0)
|
124 |
+
else:
|
125 |
+
real_masks = None
|
126 |
+
|
127 |
+
# Combine the fake and real tensors and create a dictionary of the tensors
|
128 |
+
images = torch.cat([real_images, fake_images], dim=0)
|
129 |
+
labels = torch.cat([real_labels, fake_labels], dim=0)
|
130 |
+
spe_labels = torch.cat([real_spe_labels, fake_spe_labels], dim=0)
|
131 |
+
|
132 |
+
if fake_landmarks is not None and real_landmarks is not None:
|
133 |
+
landmarks = torch.cat([real_landmarks, fake_landmarks], dim=0)
|
134 |
+
else:
|
135 |
+
landmarks = None
|
136 |
+
|
137 |
+
if fake_masks is not None and real_masks is not None:
|
138 |
+
masks = torch.cat([real_masks, fake_masks], dim=0)
|
139 |
+
else:
|
140 |
+
masks = None
|
141 |
+
|
142 |
+
data_dict = {
|
143 |
+
'image': images,
|
144 |
+
'label': labels,
|
145 |
+
'label_spe': spe_labels,
|
146 |
+
'landmark': landmarks,
|
147 |
+
'mask': masks
|
148 |
+
}
|
149 |
+
return data_dict
|
150 |
+
|
training/dataset/sbi_api.py
ADDED
@@ -0,0 +1,371 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Created by: Kaede Shiohara
|
2 |
+
# Yamasaki Lab at The University of Tokyo
|
3 | |
4 |
+
# Copyright (c) 2021
|
5 |
+
# 3rd party softwares' licenses are noticed at https://github.com/mapooon/SelfBlendedImages/blob/master/LICENSE
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torchvision import datasets,transforms,utils
|
9 |
+
from torch.utils.data import Dataset,IterableDataset
|
10 |
+
from glob import glob
|
11 |
+
import os
|
12 |
+
import numpy as np
|
13 |
+
from PIL import Image
|
14 |
+
import random
|
15 |
+
import cv2
|
16 |
+
from torch import nn
|
17 |
+
import sys
|
18 |
+
import scipy as sp
|
19 |
+
from skimage.measure import label, regionprops
|
20 |
+
from training.dataset.library.bi_online_generation import random_get_hull
|
21 |
+
import albumentations as alb
|
22 |
+
|
23 |
+
import warnings
|
24 |
+
warnings.filterwarnings('ignore')
|
25 |
+
|
26 |
+
|
27 |
+
def alpha_blend(source,target,mask):
|
28 |
+
mask_blured = get_blend_mask(mask)
|
29 |
+
img_blended=(mask_blured * source + (1 - mask_blured) * target)
|
30 |
+
return img_blended,mask_blured
|
31 |
+
|
32 |
+
|
33 |
+
def dynamic_blend(source,target,mask):
|
34 |
+
mask_blured = get_blend_mask(mask)
|
35 |
+
blend_list=[0.25,0.5,0.75,1,1,1]
|
36 |
+
blend_ratio = blend_list[np.random.randint(len(blend_list))]
|
37 |
+
mask_blured*=blend_ratio
|
38 |
+
img_blended=(mask_blured * source + (1 - mask_blured) * target)
|
39 |
+
return img_blended,mask_blured
|
40 |
+
|
41 |
+
|
42 |
+
def get_blend_mask(mask):
|
43 |
+
H,W=mask.shape
|
44 |
+
size_h=np.random.randint(192,257)
|
45 |
+
size_w=np.random.randint(192,257)
|
46 |
+
mask=cv2.resize(mask,(size_w,size_h))
|
47 |
+
kernel_1=random.randrange(5,26,2)
|
48 |
+
kernel_1=(kernel_1,kernel_1)
|
49 |
+
kernel_2=random.randrange(5,26,2)
|
50 |
+
kernel_2=(kernel_2,kernel_2)
|
51 |
+
|
52 |
+
mask_blured = cv2.GaussianBlur(mask, kernel_1, 0)
|
53 |
+
mask_blured = mask_blured/(mask_blured.max())
|
54 |
+
mask_blured[mask_blured<1]=0
|
55 |
+
|
56 |
+
mask_blured = cv2.GaussianBlur(mask_blured, kernel_2, np.random.randint(5,46))
|
57 |
+
mask_blured = mask_blured/(mask_blured.max())
|
58 |
+
mask_blured = cv2.resize(mask_blured,(W,H))
|
59 |
+
return mask_blured.reshape((mask_blured.shape+(1,)))
|
60 |
+
|
61 |
+
|
62 |
+
def get_alpha_blend_mask(mask):
|
63 |
+
kernel_list=[(11,11),(9,9),(7,7),(5,5),(3,3)]
|
64 |
+
blend_list=[0.25,0.5,0.75]
|
65 |
+
kernel_idxs=random.choices(range(len(kernel_list)), k=2)
|
66 |
+
blend_ratio = blend_list[random.sample(range(len(blend_list)), 1)[0]]
|
67 |
+
mask_blured = cv2.GaussianBlur(mask, kernel_list[0], 0)
|
68 |
+
# print(mask_blured.max())
|
69 |
+
mask_blured[mask_blured<mask_blured.max()]=0
|
70 |
+
mask_blured[mask_blured>0]=1
|
71 |
+
# mask_blured = mask
|
72 |
+
mask_blured = cv2.GaussianBlur(mask_blured, kernel_list[kernel_idxs[1]], 0)
|
73 |
+
mask_blured = mask_blured/(mask_blured.max())
|
74 |
+
return mask_blured.reshape((mask_blured.shape+(1,)))
|
75 |
+
|
76 |
+
|
77 |
+
class RandomDownScale(alb.core.transforms_interface.ImageOnlyTransform):
|
78 |
+
def apply(self,img,**params):
|
79 |
+
return self.randomdownscale(img)
|
80 |
+
|
81 |
+
def randomdownscale(self,img):
|
82 |
+
keep_ratio=True
|
83 |
+
keep_input_shape=True
|
84 |
+
H,W,C=img.shape
|
85 |
+
ratio_list=[2,4]
|
86 |
+
r=ratio_list[np.random.randint(len(ratio_list))]
|
87 |
+
img_ds=cv2.resize(img,(int(W/r),int(H/r)),interpolation=cv2.INTER_NEAREST)
|
88 |
+
if keep_input_shape:
|
89 |
+
img_ds=cv2.resize(img_ds,(W,H),interpolation=cv2.INTER_LINEAR)
|
90 |
+
|
91 |
+
return img_ds
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
def get_boundary(mask, apply_dilation=True, apply_motion_blur=True):
|
96 |
+
if len(mask.shape) == 3:
|
97 |
+
mask = mask[:, :, 0]
|
98 |
+
|
99 |
+
mask = cv2.GaussianBlur(mask, (3, 3), 0)
|
100 |
+
if mask.max() > 1:
|
101 |
+
boundary = mask / 255.
|
102 |
+
else:
|
103 |
+
boundary = mask
|
104 |
+
boundary = 4 * boundary * (1. - boundary)
|
105 |
+
|
106 |
+
boundary = boundary * 255
|
107 |
+
boundary = random_dilate(boundary)
|
108 |
+
|
109 |
+
if apply_motion_blur:
|
110 |
+
boundary = random_motion_blur(boundary)
|
111 |
+
boundary = boundary / 255.
|
112 |
+
return boundary
|
113 |
+
|
114 |
+
def random_dilate(mask, max_kernel_size=5):
|
115 |
+
kernel_size = random.randint(1, max_kernel_size)
|
116 |
+
kernel = np.ones((kernel_size, kernel_size), np.uint8)
|
117 |
+
dilated_mask = cv2.dilate(mask, kernel, iterations=1)
|
118 |
+
return dilated_mask
|
119 |
+
|
120 |
+
def random_motion_blur(mask, max_kernel_size=5):
|
121 |
+
kernel_size = random.randint(1, max_kernel_size)
|
122 |
+
kernel = np.zeros((kernel_size, kernel_size))
|
123 |
+
anchor = random.randint(0, kernel_size - 1)
|
124 |
+
kernel[:, anchor] = 1 / kernel_size
|
125 |
+
motion_blurred_mask = cv2.filter2D(mask, -1, kernel)
|
126 |
+
return motion_blurred_mask
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
class SBI_API:
|
131 |
+
def __init__(self,phase='train',image_size=256):
|
132 |
+
|
133 |
+
assert phase == 'train', f"Current SBI API only support train phase, but got {phase}"
|
134 |
+
|
135 |
+
self.image_size=(image_size,image_size)
|
136 |
+
self.phase=phase
|
137 |
+
|
138 |
+
self.transforms=self.get_transforms()
|
139 |
+
self.source_transforms = self.get_source_transforms()
|
140 |
+
self.bob_transforms = self.get_source_transforms_for_bob()
|
141 |
+
|
142 |
+
|
143 |
+
def __call__(self,img,landmark=None):
|
144 |
+
try:
|
145 |
+
assert landmark is not None, "landmark of the facial image should not be None."
|
146 |
+
# img_r,img_f,mask_f=self.self_blending(img.copy(),landmark.copy())
|
147 |
+
|
148 |
+
if random.random() < 1.0:
|
149 |
+
# apply sbi
|
150 |
+
img_r,img_f,mask_f=self.self_blending(img.copy(),landmark.copy())
|
151 |
+
else:
|
152 |
+
# apply boundary motion blur (bob)
|
153 |
+
img_r,img_f,mask_f=self.bob(img.copy(),landmark.copy())
|
154 |
+
|
155 |
+
if self.phase=='train':
|
156 |
+
transformed=self.transforms(image=img_f.astype('uint8'),image1=img_r.astype('uint8'))
|
157 |
+
img_f=transformed['image']
|
158 |
+
img_r=transformed['image1']
|
159 |
+
return img_f,img_r
|
160 |
+
except Exception as e:
|
161 |
+
print(e)
|
162 |
+
return None,None
|
163 |
+
|
164 |
+
|
165 |
+
def get_source_transforms(self):
|
166 |
+
return alb.Compose([
|
167 |
+
alb.Compose([
|
168 |
+
alb.RGBShift((-20,20),(-20,20),(-20,20),p=0.3),
|
169 |
+
alb.HueSaturationValue(hue_shift_limit=(-0.3,0.3), sat_shift_limit=(-0.3,0.3), val_shift_limit=(-0.3,0.3), p=1),
|
170 |
+
alb.RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1,0.1), p=1),
|
171 |
+
],p=1),
|
172 |
+
|
173 |
+
alb.OneOf([
|
174 |
+
RandomDownScale(p=1),
|
175 |
+
alb.Sharpen(alpha=(0.2, 0.5), lightness=(0.5, 1.0), p=1),
|
176 |
+
],p=1),
|
177 |
+
|
178 |
+
], p=1.)
|
179 |
+
|
180 |
+
|
181 |
+
def get_transforms(self):
|
182 |
+
return alb.Compose([
|
183 |
+
|
184 |
+
alb.RGBShift((-20,20),(-20,20),(-20,20),p=0.3),
|
185 |
+
alb.HueSaturationValue(hue_shift_limit=(-0.3,0.3), sat_shift_limit=(-0.3,0.3), val_shift_limit=(-0.3,0.3), p=0.3),
|
186 |
+
alb.RandomBrightnessContrast(brightness_limit=(-0.3,0.3), contrast_limit=(-0.3,0.3), p=0.3),
|
187 |
+
alb.ImageCompression(quality_lower=40,quality_upper=100,p=0.5),
|
188 |
+
|
189 |
+
],
|
190 |
+
additional_targets={f'image1': 'image'},
|
191 |
+
p=1.)
|
192 |
+
|
193 |
+
|
194 |
+
def randaffine(self,img,mask):
|
195 |
+
f=alb.Affine(
|
196 |
+
translate_percent={'x':(-0.03,0.03),'y':(-0.015,0.015)},
|
197 |
+
scale=[0.95,1/0.95],
|
198 |
+
fit_output=False,
|
199 |
+
p=1)
|
200 |
+
|
201 |
+
g=alb.ElasticTransform(
|
202 |
+
alpha=50,
|
203 |
+
sigma=7,
|
204 |
+
alpha_affine=0,
|
205 |
+
p=1,
|
206 |
+
)
|
207 |
+
|
208 |
+
transformed=f(image=img,mask=mask)
|
209 |
+
img=transformed['image']
|
210 |
+
|
211 |
+
mask=transformed['mask']
|
212 |
+
transformed=g(image=img,mask=mask)
|
213 |
+
mask=transformed['mask']
|
214 |
+
return img,mask
|
215 |
+
|
216 |
+
|
217 |
+
def get_source_transforms_for_bob(self):
|
218 |
+
return alb.Compose([
|
219 |
+
alb.Compose([
|
220 |
+
alb.ImageCompression(quality_lower=40,quality_upper=100,p=1),
|
221 |
+
],p=1),
|
222 |
+
|
223 |
+
alb.OneOf([
|
224 |
+
RandomDownScale(p=1),
|
225 |
+
alb.Sharpen(alpha=(0.2, 0.5), lightness=(0.5, 1.0), p=1),
|
226 |
+
],p=1),
|
227 |
+
|
228 |
+
], p=1.)
|
229 |
+
|
230 |
+
def bob(self,img,landmark):
|
231 |
+
H,W=len(img),len(img[0])
|
232 |
+
if np.random.rand()<0.25:
|
233 |
+
landmark=landmark[:68]
|
234 |
+
# mask=np.zeros_like(img[:,:,0])
|
235 |
+
# cv2.fillConvexPoly(mask, cv2.convexHull(landmark), 1.)
|
236 |
+
hull_type = random.choice([0, 1, 2, 3])
|
237 |
+
mask=random_get_hull(landmark,img,hull_type)[:,:,0]
|
238 |
+
|
239 |
+
source = img.copy()
|
240 |
+
source = self.bob_transforms(image=source.astype(np.uint8))['image']
|
241 |
+
source, mask = self.randaffine(source,mask)
|
242 |
+
mask = get_blend_mask(mask)
|
243 |
+
|
244 |
+
# get boundary with motion blur
|
245 |
+
boundary = get_boundary(mask)
|
246 |
+
|
247 |
+
blend_list = [0.25,0.5,0.75,1,1,1]
|
248 |
+
blend_ratio = blend_list[np.random.randint(len(blend_list))]
|
249 |
+
boundary *= blend_ratio
|
250 |
+
boundary = np.repeat(boundary[:, :, np.newaxis], 3, axis=2)
|
251 |
+
img_blended = (boundary * source + (1 - boundary) * img)
|
252 |
+
|
253 |
+
img_blended = img_blended.astype(np.uint8)
|
254 |
+
img = img.astype(np.uint8)
|
255 |
+
|
256 |
+
return img,img_blended,boundary.squeeze()
|
257 |
+
|
258 |
+
|
259 |
+
def self_blending(self,img,landmark):
|
260 |
+
H,W=len(img),len(img[0])
|
261 |
+
if np.random.rand()<0.25:
|
262 |
+
landmark=landmark[:68]
|
263 |
+
# mask=np.zeros_like(img[:,:,0])
|
264 |
+
# cv2.fillConvexPoly(mask, cv2.convexHull(landmark), 1.)
|
265 |
+
hull_type = random.choice([0, 1, 2, 3])
|
266 |
+
mask=random_get_hull(landmark,img,hull_type)[:,:,0]
|
267 |
+
|
268 |
+
source = img.copy()
|
269 |
+
if np.random.rand()<0.5:
|
270 |
+
source = self.source_transforms(image=source.astype(np.uint8))['image']
|
271 |
+
else:
|
272 |
+
img = self.source_transforms(image=img.astype(np.uint8))['image']
|
273 |
+
|
274 |
+
source, mask = self.randaffine(source,mask)
|
275 |
+
|
276 |
+
img_blended,mask=dynamic_blend(source,img,mask)
|
277 |
+
img_blended = img_blended.astype(np.uint8)
|
278 |
+
img = img.astype(np.uint8)
|
279 |
+
|
280 |
+
return img,img_blended,mask
|
281 |
+
|
282 |
+
|
283 |
+
def reorder_landmark(self,landmark):
|
284 |
+
landmark_add=np.zeros((13,2))
|
285 |
+
for idx,idx_l in enumerate([77,75,76,68,69,70,71,80,72,73,79,74,78]):
|
286 |
+
landmark_add[idx]=landmark[idx_l]
|
287 |
+
landmark[68:]=landmark_add
|
288 |
+
return landmark
|
289 |
+
|
290 |
+
|
291 |
+
def hflip(self,img,mask=None,landmark=None,bbox=None):
|
292 |
+
H,W=img.shape[:2]
|
293 |
+
landmark=landmark.copy()
|
294 |
+
if bbox is not None:
|
295 |
+
bbox=bbox.copy()
|
296 |
+
|
297 |
+
if landmark is not None:
|
298 |
+
landmark_new=np.zeros_like(landmark)
|
299 |
+
|
300 |
+
|
301 |
+
landmark_new[:17]=landmark[:17][::-1]
|
302 |
+
landmark_new[17:27]=landmark[17:27][::-1]
|
303 |
+
|
304 |
+
landmark_new[27:31]=landmark[27:31]
|
305 |
+
landmark_new[31:36]=landmark[31:36][::-1]
|
306 |
+
|
307 |
+
landmark_new[36:40]=landmark[42:46][::-1]
|
308 |
+
landmark_new[40:42]=landmark[46:48][::-1]
|
309 |
+
|
310 |
+
landmark_new[42:46]=landmark[36:40][::-1]
|
311 |
+
landmark_new[46:48]=landmark[40:42][::-1]
|
312 |
+
|
313 |
+
landmark_new[48:55]=landmark[48:55][::-1]
|
314 |
+
landmark_new[55:60]=landmark[55:60][::-1]
|
315 |
+
|
316 |
+
landmark_new[60:65]=landmark[60:65][::-1]
|
317 |
+
landmark_new[65:68]=landmark[65:68][::-1]
|
318 |
+
if len(landmark)==68:
|
319 |
+
pass
|
320 |
+
elif len(landmark)==81:
|
321 |
+
landmark_new[68:81]=landmark[68:81][::-1]
|
322 |
+
else:
|
323 |
+
raise NotImplementedError
|
324 |
+
landmark_new[:,0]=W-landmark_new[:,0]
|
325 |
+
|
326 |
+
else:
|
327 |
+
landmark_new=None
|
328 |
+
|
329 |
+
if bbox is not None:
|
330 |
+
bbox_new=np.zeros_like(bbox)
|
331 |
+
bbox_new[0,0]=bbox[1,0]
|
332 |
+
bbox_new[1,0]=bbox[0,0]
|
333 |
+
bbox_new[:,0]=W-bbox_new[:,0]
|
334 |
+
bbox_new[:,1]=bbox[:,1].copy()
|
335 |
+
if len(bbox)>2:
|
336 |
+
bbox_new[2,0]=W-bbox[3,0]
|
337 |
+
bbox_new[2,1]=bbox[3,1]
|
338 |
+
bbox_new[3,0]=W-bbox[2,0]
|
339 |
+
bbox_new[3,1]=bbox[2,1]
|
340 |
+
bbox_new[4,0]=W-bbox[4,0]
|
341 |
+
bbox_new[4,1]=bbox[4,1]
|
342 |
+
bbox_new[5,0]=W-bbox[6,0]
|
343 |
+
bbox_new[5,1]=bbox[6,1]
|
344 |
+
bbox_new[6,0]=W-bbox[5,0]
|
345 |
+
bbox_new[6,1]=bbox[5,1]
|
346 |
+
else:
|
347 |
+
bbox_new=None
|
348 |
+
|
349 |
+
if mask is not None:
|
350 |
+
mask=mask[:,::-1]
|
351 |
+
else:
|
352 |
+
mask=None
|
353 |
+
img=img[:,::-1].copy()
|
354 |
+
return img,mask,landmark_new,bbox_new
|
355 |
+
|
356 |
+
|
357 |
+
if __name__=='__main__':
|
358 |
+
seed=10
|
359 |
+
random.seed(seed)
|
360 |
+
torch.manual_seed(seed)
|
361 |
+
np.random.seed(seed)
|
362 |
+
torch.cuda.manual_seed(seed)
|
363 |
+
torch.backends.cudnn.deterministic = True
|
364 |
+
torch.backends.cudnn.benchmark = False
|
365 |
+
api=SBI_API(phase='train',image_size=256)
|
366 |
+
|
367 |
+
img_path = 'FaceForensics++/original_sequences/youtube/c23/frames/000/000.png'
|
368 |
+
img = cv2.imread(img_path)
|
369 |
+
landmark_path = img_path.replace('frames', 'landmarks').replace('png', 'npy')
|
370 |
+
landmark = np.load(landmark_path)
|
371 |
+
sbi_img, ori_img = api(img, landmark)
|
training/dataset/sbi_dataset.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
# author: Zhiyuan Yan
|
3 |
+
# email: [email protected]
|
4 |
+
# date: 2024-01-26
|
5 |
+
|
6 |
+
The code is designed for self-blending method (SBI, CVPR 2024).
|
7 |
+
'''
|
8 |
+
|
9 |
+
import sys
|
10 |
+
sys.path.append('.')
|
11 |
+
|
12 |
+
import cv2
|
13 |
+
import yaml
|
14 |
+
import torch
|
15 |
+
import numpy as np
|
16 |
+
from copy import deepcopy
|
17 |
+
import albumentations as A
|
18 |
+
from training.dataset.albu import IsotropicResize
|
19 |
+
from training.dataset.abstract_dataset import DeepfakeAbstractBaseDataset
|
20 |
+
from training.dataset.sbi_api import SBI_API
|
21 |
+
|
22 |
+
|
23 |
+
class SBIDataset(DeepfakeAbstractBaseDataset):
|
24 |
+
def __init__(self, config=None, mode='train'):
|
25 |
+
super().__init__(config, mode)
|
26 |
+
|
27 |
+
# Get real lists
|
28 |
+
# Fix the label of real images to be 0
|
29 |
+
self.real_imglist = [(img, label) for img, label in zip(self.image_list, self.label_list) if label == 0]
|
30 |
+
|
31 |
+
# Init SBI
|
32 |
+
self.sbi = SBI_API(phase=mode,image_size=config['resolution'])
|
33 |
+
|
34 |
+
# Init data augmentation method
|
35 |
+
self.transform = self.init_data_aug_method()
|
36 |
+
|
37 |
+
def __getitem__(self, index):
|
38 |
+
# Get the real image paths and labels
|
39 |
+
real_image_path, real_label = self.real_imglist[index]
|
40 |
+
|
41 |
+
# Get the landmark paths for real images
|
42 |
+
real_landmark_path = real_image_path.replace('frames', 'landmarks').replace('.png', '.npy')
|
43 |
+
landmark = self.load_landmark(real_landmark_path).astype(np.int32)
|
44 |
+
|
45 |
+
# Load the real images
|
46 |
+
real_image = self.load_rgb(real_image_path)
|
47 |
+
real_image = np.array(real_image) # Convert to numpy array
|
48 |
+
|
49 |
+
# Generate the corresponding SBI sample
|
50 |
+
fake_image, real_image = self.sbi(real_image, landmark)
|
51 |
+
if fake_image is None:
|
52 |
+
fake_image = deepcopy(real_image)
|
53 |
+
fake_label = 0
|
54 |
+
else:
|
55 |
+
fake_label = 1
|
56 |
+
|
57 |
+
# To tensor and normalize for fake and real images
|
58 |
+
fake_image_trans = self.normalize(self.to_tensor(fake_image))
|
59 |
+
real_image_trans = self.normalize(self.to_tensor(real_image))
|
60 |
+
|
61 |
+
return {"fake": (fake_image_trans, fake_label),
|
62 |
+
"real": (real_image_trans, real_label)}
|
63 |
+
|
64 |
+
def __len__(self):
|
65 |
+
return len(self.real_imglist)
|
66 |
+
|
67 |
+
@staticmethod
|
68 |
+
def collate_fn(batch):
|
69 |
+
"""
|
70 |
+
Collate a batch of data points.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
batch (list): A list of tuples containing the image tensor and label tensor.
|
74 |
+
|
75 |
+
Returns:
|
76 |
+
A tuple containing the image tensor, the label tensor, the landmark tensor,
|
77 |
+
and the mask tensor.
|
78 |
+
"""
|
79 |
+
# Separate the image, label, landmark, and mask tensors for fake and real data
|
80 |
+
fake_images, fake_labels = zip(*[data["fake"] for data in batch])
|
81 |
+
real_images, real_labels = zip(*[data["real"] for data in batch])
|
82 |
+
|
83 |
+
# Stack the image, label, landmark, and mask tensors for fake and real data
|
84 |
+
fake_images = torch.stack(fake_images, dim=0)
|
85 |
+
fake_labels = torch.LongTensor(fake_labels)
|
86 |
+
real_images = torch.stack(real_images, dim=0)
|
87 |
+
real_labels = torch.LongTensor(real_labels)
|
88 |
+
|
89 |
+
# Combine the fake and real tensors and create a dictionary of the tensors
|
90 |
+
images = torch.cat([real_images, fake_images], dim=0)
|
91 |
+
labels = torch.cat([real_labels, fake_labels], dim=0)
|
92 |
+
|
93 |
+
data_dict = {
|
94 |
+
'image': images,
|
95 |
+
'label': labels,
|
96 |
+
'landmark': None,
|
97 |
+
'mask': None,
|
98 |
+
}
|
99 |
+
return data_dict
|
100 |
+
|
101 |
+
def init_data_aug_method(self):
|
102 |
+
trans = A.Compose([
|
103 |
+
A.HorizontalFlip(p=self.config['data_aug']['flip_prob']),
|
104 |
+
A.Rotate(limit=self.config['data_aug']['rotate_limit'], p=self.config['data_aug']['rotate_prob']),
|
105 |
+
A.GaussianBlur(blur_limit=self.config['data_aug']['blur_limit'], p=self.config['data_aug']['blur_prob']),
|
106 |
+
A.OneOf([
|
107 |
+
IsotropicResize(max_side=self.config['resolution'], interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC),
|
108 |
+
IsotropicResize(max_side=self.config['resolution'], interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_LINEAR),
|
109 |
+
IsotropicResize(max_side=self.config['resolution'], interpolation_down=cv2.INTER_LINEAR, interpolation_up=cv2.INTER_LINEAR),
|
110 |
+
], p = 0 if self.config['with_landmark'] else 1),
|
111 |
+
A.OneOf([
|
112 |
+
A.RandomBrightnessContrast(brightness_limit=self.config['data_aug']['brightness_limit'], contrast_limit=self.config['data_aug']['contrast_limit']),
|
113 |
+
A.FancyPCA(),
|
114 |
+
A.HueSaturationValue()
|
115 |
+
], p=0.5),
|
116 |
+
A.ImageCompression(quality_lower=self.config['data_aug']['quality_lower'], quality_upper=self.config['data_aug']['quality_upper'], p=0.5)
|
117 |
+
],
|
118 |
+
additional_targets={'real': 'sbi'},
|
119 |
+
)
|
120 |
+
return trans
|
121 |
+
|
122 |
+
|
123 |
+
if __name__ == '__main__':
|
124 |
+
with open('/data/home/zhiyuanyan/DeepfakeBench/training/config/detector/sbi.yaml', 'r') as f:
|
125 |
+
config = yaml.safe_load(f)
|
126 |
+
train_set = SBIDataset(config=config, mode='train')
|
127 |
+
train_data_loader = \
|
128 |
+
torch.utils.data.DataLoader(
|
129 |
+
dataset=train_set,
|
130 |
+
batch_size=config['train_batchSize'],
|
131 |
+
shuffle=True,
|
132 |
+
num_workers=0,
|
133 |
+
collate_fn=train_set.collate_fn,
|
134 |
+
)
|
135 |
+
from tqdm import tqdm
|
136 |
+
for iteration, batch in enumerate(tqdm(train_data_loader)):
|
137 |
+
print(iteration)
|
138 |
+
if iteration > 10:
|
139 |
+
break
|
training/dataset/tall_dataset.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# author: Zhiyuan Yan
|
2 |
+
# email: [email protected]
|
3 |
+
# date: 2023-03-30
|
4 |
+
# description: Abstract Base Class for all types of deepfake datasets.
|
5 |
+
|
6 |
+
import sys
|
7 |
+
|
8 |
+
from torch import nn
|
9 |
+
|
10 |
+
sys.path.append('.')
|
11 |
+
|
12 |
+
import yaml
|
13 |
+
import numpy as np
|
14 |
+
from copy import deepcopy
|
15 |
+
import random
|
16 |
+
import torch
|
17 |
+
from torch.utils import data
|
18 |
+
from torchvision.utils import save_image
|
19 |
+
from training.dataset import DeepfakeAbstractBaseDataset
|
20 |
+
from einops import rearrange
|
21 |
+
|
22 |
+
FFpp_pool = ['FaceForensics++', 'FaceShifter', 'DeepFakeDetection', 'FF-DF', 'FF-F2F', 'FF-FS', 'FF-NT'] #
|
23 |
+
|
24 |
+
|
25 |
+
def all_in_pool(inputs, pool):
|
26 |
+
for each in inputs:
|
27 |
+
if each not in pool:
|
28 |
+
return False
|
29 |
+
return True
|
30 |
+
|
31 |
+
|
32 |
+
class TALLDataset(DeepfakeAbstractBaseDataset):
|
33 |
+
def __init__(self, config=None, mode='train'):
|
34 |
+
"""Initializes the dataset object.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
config (dict): A dictionary containing configuration parameters.
|
38 |
+
mode (str): A string indicating the mode (train or test).
|
39 |
+
|
40 |
+
Raises:
|
41 |
+
NotImplementedError: If mode is not train or test.
|
42 |
+
"""
|
43 |
+
super().__init__(config, mode)
|
44 |
+
|
45 |
+
assert self.video_level, "TALL is a videl-based method"
|
46 |
+
assert int(self.clip_size ** 0.5) ** 2 == self.clip_size, 'clip_size must be square of an integer, e.g., 4'
|
47 |
+
|
48 |
+
def __getitem__(self, index, no_norm=False):
|
49 |
+
"""
|
50 |
+
Returns the data point at the given index.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
index (int): The index of the data point.
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
A tuple containing the image tensor, the label tensor, the landmark tensor,
|
57 |
+
and the mask tensor.
|
58 |
+
"""
|
59 |
+
# Get the image paths and label
|
60 |
+
image_paths = self.data_dict['image'][index]
|
61 |
+
label = self.data_dict['label'][index]
|
62 |
+
|
63 |
+
if not isinstance(image_paths, list):
|
64 |
+
image_paths = [image_paths] # for the image-level IO, only one frame is used
|
65 |
+
|
66 |
+
image_tensors = []
|
67 |
+
landmark_tensors = []
|
68 |
+
mask_tensors = []
|
69 |
+
augmentation_seed = None
|
70 |
+
|
71 |
+
for image_path in image_paths:
|
72 |
+
# Initialize a new seed for data augmentation at the start of each video
|
73 |
+
if self.video_level and image_path == image_paths[0]:
|
74 |
+
augmentation_seed = random.randint(0, 2 ** 32 - 1)
|
75 |
+
|
76 |
+
# Get the mask and landmark paths
|
77 |
+
mask_path = image_path.replace('frames', 'masks') # Use .png for mask
|
78 |
+
landmark_path = image_path.replace('frames', 'landmarks').replace('.png', '.npy') # Use .npy for landmark
|
79 |
+
|
80 |
+
# Load the image
|
81 |
+
try:
|
82 |
+
image = self.load_rgb(image_path)
|
83 |
+
except Exception as e:
|
84 |
+
# Skip this image and return the first one
|
85 |
+
print(f"Error loading image at index {index}: {e}")
|
86 |
+
return self.__getitem__(0)
|
87 |
+
image = np.array(image) # Convert to numpy array for data augmentation
|
88 |
+
|
89 |
+
# Load mask and landmark (if needed)
|
90 |
+
if self.config['with_mask']:
|
91 |
+
mask = self.load_mask(mask_path)
|
92 |
+
else:
|
93 |
+
mask = None
|
94 |
+
if self.config['with_landmark']:
|
95 |
+
landmarks = self.load_landmark(landmark_path)
|
96 |
+
else:
|
97 |
+
landmarks = None
|
98 |
+
|
99 |
+
# Do Data Augmentation
|
100 |
+
if self.mode == 'train' and self.config['use_data_augmentation']:
|
101 |
+
image_trans, landmarks_trans, mask_trans = self.data_aug(image, landmarks, mask, augmentation_seed)
|
102 |
+
else:
|
103 |
+
image_trans, landmarks_trans, mask_trans = deepcopy(image), deepcopy(landmarks), deepcopy(mask)
|
104 |
+
|
105 |
+
# To tensor and normalize
|
106 |
+
if not no_norm:
|
107 |
+
image_trans = self.normalize(self.to_tensor(image_trans))
|
108 |
+
if self.config['with_landmark']:
|
109 |
+
landmarks_trans = torch.from_numpy(landmarks)
|
110 |
+
if self.config['with_mask']:
|
111 |
+
mask_trans = torch.from_numpy(mask_trans)
|
112 |
+
|
113 |
+
image_tensors.append(image_trans)
|
114 |
+
landmark_tensors.append(landmarks_trans)
|
115 |
+
mask_tensors.append(mask_trans)
|
116 |
+
|
117 |
+
if self.video_level:
|
118 |
+
|
119 |
+
# Stack image tensors along a new dimension (time)
|
120 |
+
image_tensors = torch.stack(image_tensors, dim=0)
|
121 |
+
|
122 |
+
# cut out 16x16 patch
|
123 |
+
F, C, H, W = image_tensors.shape
|
124 |
+
x, y = np.random.randint(W), np.random.randint(H)
|
125 |
+
x1 = np.clip(x - self.config['mask_grid_size'] // 2, 0, W)
|
126 |
+
x2 = np.clip(x + self.config['mask_grid_size'] // 2, 0, W)
|
127 |
+
y1 = np.clip(y - self.config['mask_grid_size'] // 2, 0, H)
|
128 |
+
y2 = np.clip(y + self.config['mask_grid_size'] // 2, 0, H)
|
129 |
+
image_tensors[:, :, y1:y2, x1:x2] = -1
|
130 |
+
|
131 |
+
# # concatenate sub-image and reszie to 224x224
|
132 |
+
# image_tensors = image_tensors.reshape(-1, H, W)
|
133 |
+
# image_tensors = rearrange(image_tensors, '(rh rw c) h w -> c (rh h) (rw w)', rh=2, c=C)
|
134 |
+
# image_tensors = nn.functional.interpolate(image_tensors.unsqueeze(0),
|
135 |
+
# size=(self.config['resolution'], self.config['resolution']),
|
136 |
+
# mode='bilinear', align_corners=False).squeeze(0)
|
137 |
+
# Stack landmark and mask tensors along a new dimension (time)
|
138 |
+
if not any(landmark is None or (isinstance(landmark, list) and None in landmark) for landmark in
|
139 |
+
landmark_tensors):
|
140 |
+
landmark_tensors = torch.stack(landmark_tensors, dim=0)
|
141 |
+
if not any(m is None or (isinstance(m, list) and None in m) for m in mask_tensors):
|
142 |
+
mask_tensors = torch.stack(mask_tensors, dim=0)
|
143 |
+
else:
|
144 |
+
# Get the first image tensor
|
145 |
+
image_tensors = image_tensors[0]
|
146 |
+
# Get the first landmark and mask tensors
|
147 |
+
if not any(landmark is None or (isinstance(landmark, list) and None in landmark) for landmark in
|
148 |
+
landmark_tensors):
|
149 |
+
landmark_tensors = landmark_tensors[0]
|
150 |
+
if not any(m is None or (isinstance(m, list) and None in m) for m in mask_tensors):
|
151 |
+
mask_tensors = mask_tensors[0]
|
152 |
+
|
153 |
+
return image_tensors, label, landmark_tensors, mask_tensors
|
154 |
+
|
155 |
+
|
156 |
+
if __name__ == "__main__":
|
157 |
+
with open('training/config/detector/tall.yaml', 'r') as f:
|
158 |
+
config = yaml.safe_load(f)
|
159 |
+
train_set = TALLDataset(
|
160 |
+
config=config,
|
161 |
+
mode='train',
|
162 |
+
)
|
163 |
+
train_data_loader = \
|
164 |
+
torch.utils.data.DataLoader(
|
165 |
+
dataset=train_set,
|
166 |
+
batch_size=config['train_batchSize'],
|
167 |
+
shuffle=True,
|
168 |
+
num_workers=0,
|
169 |
+
collate_fn=train_set.collate_fn,
|
170 |
+
)
|
171 |
+
from tqdm import tqdm
|
172 |
+
|
173 |
+
for iteration, batch in enumerate(tqdm(train_data_loader)):
|
174 |
+
print(batch['image'].shape)
|
175 |
+
print(batch['label'])
|
176 |
+
b, f, c, h, w = batch['image'].shape
|
177 |
+
for i in range(f):
|
178 |
+
img_tensor = batch['image'][0][i]
|
179 |
+
img_tensor = img_tensor * torch.tensor([0.5, 0.5, 0.5]).reshape(-1, 1, 1) + torch.tensor(
|
180 |
+
[0.5, 0.5, 0.5]).reshape(-1, 1, 1)
|
181 |
+
save_image(img_tensor, f'{i}.png')
|
182 |
+
|
183 |
+
break
|
training/dataset/utils/DeepFakeMask.py
ADDED
@@ -0,0 +1,402 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python
|
2 |
+
# -*- coding: UTF-8 -*-
|
3 |
+
# Created by: algohunt
|
4 |
+
# Microsoft Research & Peking University
|
5 | |
6 |
+
# Copyright (c) 2019
|
7 |
+
|
8 |
+
#!/usr/bin/env python3
|
9 |
+
""" Masks functions for faceswap.py """
|
10 |
+
|
11 |
+
import inspect
|
12 |
+
import logging
|
13 |
+
import sys
|
14 |
+
|
15 |
+
import cv2
|
16 |
+
import numpy as np
|
17 |
+
import random
|
18 |
+
from math import ceil, floor
|
19 |
+
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
|
20 |
+
|
21 |
+
def landmarks_to_bbox(landmarks: np.ndarray) -> np.ndarray:
|
22 |
+
if not isinstance(landmarks, np.ndarray):
|
23 |
+
landmarks = np.array(landmarks)
|
24 |
+
assert landmarks.shape[1] == 2
|
25 |
+
x0, y0 = np.min(landmarks, axis=0) # x和y轴上分别的最小值, [264,97]
|
26 |
+
x1, y1 = np.max(landmarks, axis=0) # x和y轴上分别的最小值, [370,236]
|
27 |
+
bbox = np.array([x0, y0, x1, y1])
|
28 |
+
return bbox
|
29 |
+
|
30 |
+
def mask_from_points(image: np.ndarray, points: np.ndarray) -> np.ndarray:
|
31 |
+
"""8 (or omitted) - 8-connected line.
|
32 |
+
4 - 4-connected line.
|
33 |
+
LINE_AA - antialiased line."""
|
34 |
+
h, w = image.shape[:2]
|
35 |
+
points = points.astype(int)
|
36 |
+
assert points.shape[1] == 2, f"points.shape: {points.shape}"
|
37 |
+
out = np.zeros((h, w), dtype=np.uint8)
|
38 |
+
hull = cv2.convexHull(points.astype(int))
|
39 |
+
cv2.fillConvexPoly(out, hull, 255, lineType=4) # cv2.LINE_AA
|
40 |
+
return out
|
41 |
+
|
42 |
+
def get_available_masks():
|
43 |
+
""" Return a list of the available masks for cli """
|
44 |
+
masks = sorted([name for name, obj in inspect.getmembers(sys.modules[__name__])
|
45 |
+
if inspect.isclass(obj) and name != "Mask"])
|
46 |
+
masks.append("none")
|
47 |
+
# logger.debug(masks)
|
48 |
+
return masks
|
49 |
+
|
50 |
+
def landmarks_68_symmetries():
|
51 |
+
# 68 landmarks symmetry
|
52 |
+
#
|
53 |
+
sym_ids = [9, 58, 67, 63, 52, 34, 31, 30, 29, 28]
|
54 |
+
sym = {
|
55 |
+
1: 17,
|
56 |
+
2: 16,
|
57 |
+
3: 15,
|
58 |
+
4: 14,
|
59 |
+
5: 13,
|
60 |
+
6: 12,
|
61 |
+
7: 11,
|
62 |
+
8: 10,
|
63 |
+
#
|
64 |
+
51: 53,
|
65 |
+
50: 54,
|
66 |
+
49: 55,
|
67 |
+
60: 56,
|
68 |
+
59: 57,
|
69 |
+
#
|
70 |
+
62: 64,
|
71 |
+
61: 65,
|
72 |
+
68: 66,
|
73 |
+
#
|
74 |
+
33: 35,
|
75 |
+
32: 36,
|
76 |
+
#
|
77 |
+
37: 46,
|
78 |
+
38: 45,
|
79 |
+
39: 44,
|
80 |
+
40: 43,
|
81 |
+
41: 48,
|
82 |
+
42: 47,
|
83 |
+
#
|
84 |
+
18: 27,
|
85 |
+
19: 26,
|
86 |
+
20: 25,
|
87 |
+
21: 24,
|
88 |
+
22: 23,
|
89 |
+
#
|
90 |
+
# id
|
91 |
+
9: 9,
|
92 |
+
58: 58,
|
93 |
+
67: 67,
|
94 |
+
63: 63,
|
95 |
+
52: 52,
|
96 |
+
34: 34,
|
97 |
+
31: 31,
|
98 |
+
30: 30,
|
99 |
+
29: 29,
|
100 |
+
28: 28,
|
101 |
+
}
|
102 |
+
return sym, sym_ids
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
def get_default_mask():
|
107 |
+
""" Set the default mask for cli """
|
108 |
+
masks = get_available_masks()
|
109 |
+
default = "dfl_full"
|
110 |
+
default = default if default in masks else masks[0]
|
111 |
+
# logger.debug(default)
|
112 |
+
return default
|
113 |
+
|
114 |
+
|
115 |
+
class Mask():
|
116 |
+
""" Parent class for masks
|
117 |
+
the output mask will be <mask_type>.mask
|
118 |
+
channels: 1, 3 or 4:
|
119 |
+
1 - Returns a single channel mask
|
120 |
+
3 - Returns a 3 channel mask
|
121 |
+
4 - Returns the original image with the mask in the alpha channel """
|
122 |
+
|
123 |
+
def __init__(self, landmarks, face, channels=4, idx = 0):
|
124 |
+
# logger.info("Initializing %s: (face_shape: %s, channels: %s, landmarks: %s)",
|
125 |
+
# self.__class__.__name__, face.shape, channels, landmarks)
|
126 |
+
self.landmarks = landmarks
|
127 |
+
self.face = face
|
128 |
+
self.channels = channels
|
129 |
+
self.cols = 4 # grid mask
|
130 |
+
self.rows = 4 # grid mask
|
131 |
+
self.idx = idx # grid mask
|
132 |
+
|
133 |
+
mask = self.build_mask()
|
134 |
+
self.mask = self.merge_mask(mask)
|
135 |
+
# logger.info("Initialized %s", self.__class__.__name__)
|
136 |
+
|
137 |
+
def build_mask(self):
|
138 |
+
""" Override to build the mask """
|
139 |
+
raise NotImplementedError
|
140 |
+
|
141 |
+
def merge_mask(self, mask):
|
142 |
+
""" Return the mask in requested shape """
|
143 |
+
# logger.info("mask_shape: %s", mask.shape)
|
144 |
+
assert self.channels in (1, 3, 4), "Channels should be 1, 3 or 4"
|
145 |
+
assert mask.shape[2] == 1 and mask.ndim == 3, "Input mask be 3 dimensions with 1 channel"
|
146 |
+
|
147 |
+
if self.channels == 3:
|
148 |
+
retval = np.tile(mask, 3)
|
149 |
+
elif self.channels == 4:
|
150 |
+
retval = np.concatenate((self.face, mask), -1)
|
151 |
+
else:
|
152 |
+
retval = mask
|
153 |
+
|
154 |
+
# logger.info("Final mask shape: %s", retval.shape)
|
155 |
+
return retval
|
156 |
+
|
157 |
+
|
158 |
+
class dfl_full(Mask): # pylint: disable=invalid-name
|
159 |
+
""" DFL facial mask """
|
160 |
+
def build_mask(self):
|
161 |
+
mask = np.zeros(self.face.shape[0:2] + (1, ), dtype=np.float32)
|
162 |
+
|
163 |
+
nose_ridge = (self.landmarks[27:31], self.landmarks[33:34])
|
164 |
+
jaw = (self.landmarks[0:17],
|
165 |
+
self.landmarks[48:68],
|
166 |
+
self.landmarks[0:1],
|
167 |
+
self.landmarks[8:9],
|
168 |
+
self.landmarks[16:17])
|
169 |
+
eyes = (self.landmarks[17:27],
|
170 |
+
self.landmarks[0:1],
|
171 |
+
self.landmarks[27:28],
|
172 |
+
self.landmarks[16:17],
|
173 |
+
self.landmarks[33:34])
|
174 |
+
parts = [jaw, nose_ridge, eyes]
|
175 |
+
|
176 |
+
for item in parts:
|
177 |
+
merged = np.concatenate(item)
|
178 |
+
cv2.fillConvexPoly(mask, cv2.convexHull(merged), 255.) # pylint: disable=no-member
|
179 |
+
return mask
|
180 |
+
|
181 |
+
|
182 |
+
class components(Mask): # pylint: disable=invalid-name
|
183 |
+
""" Component model mask """
|
184 |
+
def build_mask(self):
|
185 |
+
mask = np.zeros(self.face.shape[0:2] + (1, ), dtype=np.float32)
|
186 |
+
|
187 |
+
r_jaw = (self.landmarks[0:9], self.landmarks[17:18])
|
188 |
+
l_jaw = (self.landmarks[8:17], self.landmarks[26:27])
|
189 |
+
r_cheek = (self.landmarks[17:20], self.landmarks[8:9])
|
190 |
+
l_cheek = (self.landmarks[24:27], self.landmarks[8:9])
|
191 |
+
nose_ridge = (self.landmarks[19:25], self.landmarks[8:9],)
|
192 |
+
r_eye = (self.landmarks[17:22],
|
193 |
+
self.landmarks[27:28],
|
194 |
+
self.landmarks[31:36],
|
195 |
+
self.landmarks[8:9])
|
196 |
+
l_eye = (self.landmarks[22:27],
|
197 |
+
self.landmarks[27:28],
|
198 |
+
self.landmarks[31:36],
|
199 |
+
self.landmarks[8:9])
|
200 |
+
nose = (self.landmarks[27:31], self.landmarks[31:36])
|
201 |
+
parts = [r_jaw, l_jaw, r_cheek, l_cheek, nose_ridge, r_eye, l_eye, nose]
|
202 |
+
|
203 |
+
# ---change 0531 random select parts ---
|
204 |
+
# r_face = (self.landmarks[0:9], self.landmarks[17:18],self.landmarks[17:20], self.landmarks[8:9])
|
205 |
+
# l_face = (self.landmarks[8:17], self.landmarks[26:27],self.landmarks[24:27], self.landmarks[8:9])
|
206 |
+
# nose_final = (self.landmarks[19:25], self.landmarks[8:9],self.landmarks[27:31], self.landmarks[31:36])
|
207 |
+
# parts = [r_face,l_face,nose_final,r_eye,l_eye]
|
208 |
+
# num_to_select = random.randint(1, len(parts))
|
209 |
+
# parts = random.sample(parts, num_to_select)
|
210 |
+
# print(len(parts), parts[0])
|
211 |
+
# ---change 0531 random select parts ---
|
212 |
+
|
213 |
+
for item in parts:
|
214 |
+
merged = np.concatenate(item)
|
215 |
+
cv2.fillConvexPoly(mask, cv2.convexHull(merged), 255.) # pylint: disable=no-member
|
216 |
+
return mask
|
217 |
+
|
218 |
+
|
219 |
+
class extended(Mask): # pylint: disable=invalid-name
|
220 |
+
""" Extended mask
|
221 |
+
Based on components mask. Attempts to extend the eyebrow points up the forehead
|
222 |
+
"""
|
223 |
+
def build_mask(self):
|
224 |
+
mask = np.zeros(self.face.shape[0:2] + (1, ), dtype=np.float32)
|
225 |
+
|
226 |
+
landmarks = self.landmarks.copy()
|
227 |
+
# mid points between the side of face and eye point
|
228 |
+
ml_pnt = (landmarks[36] + landmarks[0]) // 2
|
229 |
+
mr_pnt = (landmarks[16] + landmarks[45]) // 2
|
230 |
+
|
231 |
+
# mid points between the mid points and eye
|
232 |
+
ql_pnt = (landmarks[36] + ml_pnt) // 2
|
233 |
+
qr_pnt = (landmarks[45] + mr_pnt) // 2
|
234 |
+
|
235 |
+
# Top of the eye arrays
|
236 |
+
bot_l = np.array((ql_pnt, landmarks[36], landmarks[37], landmarks[38], landmarks[39]))
|
237 |
+
bot_r = np.array((landmarks[42], landmarks[43], landmarks[44], landmarks[45], qr_pnt))
|
238 |
+
|
239 |
+
# Eyebrow arrays
|
240 |
+
top_l = landmarks[17:22]
|
241 |
+
top_r = landmarks[22:27]
|
242 |
+
|
243 |
+
# Adjust eyebrow arrays
|
244 |
+
landmarks[17:22] = top_l + ((top_l - bot_l) // 2)
|
245 |
+
landmarks[22:27] = top_r + ((top_r - bot_r) // 2)
|
246 |
+
|
247 |
+
r_jaw = (landmarks[0:9], landmarks[17:18])
|
248 |
+
l_jaw = (landmarks[8:17], landmarks[26:27])
|
249 |
+
r_cheek = (landmarks[17:20], landmarks[8:9])
|
250 |
+
l_cheek = (landmarks[24:27], landmarks[8:9])
|
251 |
+
nose_ridge = (landmarks[19:25], landmarks[8:9],)
|
252 |
+
r_eye = (landmarks[17:22], landmarks[27:28], landmarks[31:36], landmarks[8:9])
|
253 |
+
l_eye = (landmarks[22:27], landmarks[27:28], landmarks[31:36], landmarks[8:9])
|
254 |
+
nose = (landmarks[27:31], landmarks[31:36])
|
255 |
+
parts = [r_jaw, l_jaw, r_cheek, l_cheek, nose_ridge, r_eye, l_eye, nose]
|
256 |
+
|
257 |
+
for item in parts:
|
258 |
+
merged = np.concatenate(item)
|
259 |
+
cv2.fillConvexPoly(mask, cv2.convexHull(merged), 255.) # pylint: disable=no-member
|
260 |
+
return mask
|
261 |
+
|
262 |
+
|
263 |
+
class facehull(Mask): # pylint: disable=invalid-name
|
264 |
+
""" Basic face hull mask """
|
265 |
+
def build_mask(self):
|
266 |
+
mask = np.zeros(self.face.shape[0:2] + (1, ), dtype=np.float32)
|
267 |
+
hull = cv2.convexHull( # pylint: disable=no-member
|
268 |
+
np.array(self.landmarks).reshape((-1, 2)))
|
269 |
+
cv2.fillConvexPoly(mask, hull, 255.0, lineType=cv2.LINE_AA) # pylint: disable=no-member
|
270 |
+
return mask
|
271 |
+
# mask = np.zeros(img.shape[0:2] + (1, ), dtype=np.float32)
|
272 |
+
# hull = cv2.convexHull(np.array(landmark).reshape((-1, 2)))
|
273 |
+
|
274 |
+
class facehull2(Mask): # pylint: disable=invalid-name
|
275 |
+
""" Basic face hull mask """
|
276 |
+
def build_mask(self):
|
277 |
+
mask = np.zeros(self.face.shape[0:2] + (1, ), dtype=np.uint8)
|
278 |
+
hull = cv2.convexHull( # pylint: disable=no-member
|
279 |
+
np.array(self.landmarks).reshape((-1, 2)))
|
280 |
+
cv2.fillConvexPoly(mask, hull, 1.0, lineType=cv2.LINE_AA)
|
281 |
+
return mask
|
282 |
+
|
283 |
+
|
284 |
+
|
285 |
+
class gridMasking(Mask):
|
286 |
+
|
287 |
+
def build_mask(self):
|
288 |
+
h, w = self.face.shape[:2]
|
289 |
+
landmarks = self.landmarks[:68]
|
290 |
+
# if idx is None:
|
291 |
+
# idx = np.random.randint(0, self.total)
|
292 |
+
r, c = divmod(self.idx, self.cols) # 获得除数和余数,即这个idx对应第r行第c列
|
293 |
+
|
294 |
+
# pixel related
|
295 |
+
xmin, ymin, xmax, ymax = landmarks_to_bbox(landmarks)
|
296 |
+
dx = ceil((xmax - xmin) / self.cols)
|
297 |
+
dy = ceil((ymax - ymin) / self.rows)
|
298 |
+
|
299 |
+
mask = np.zeros((h, w), dtype=np.uint8)
|
300 |
+
|
301 |
+
# fill the cell mask
|
302 |
+
x0, y0 = floor(xmin + dx * c), floor(ymin + dy * r)
|
303 |
+
x1, y1 = floor(x0 + dx), floor(y0 + dy)
|
304 |
+
cv2.rectangle(mask, (x0, y0), (x1, y1), 255, -1)
|
305 |
+
|
306 |
+
# merge the cell mask with the convex hull
|
307 |
+
ch = mask_from_points(self.face, landmarks)
|
308 |
+
# ch = cv2.cvtColor(ch, cv2.COLOR_BGR2GRAY)
|
309 |
+
# mask = (mask & ch) / 255.0
|
310 |
+
mask = cv2.bitwise_and(mask, mask, mask=ch)
|
311 |
+
mask = mask.reshape([mask.shape[0],mask.shape[1], 1])
|
312 |
+
# cv2.bitwise_or(img, d_3c_i)
|
313 |
+
|
314 |
+
return mask
|
315 |
+
|
316 |
+
class MeshgridMasking(Mask):
|
317 |
+
areas = [
|
318 |
+
[1, 2, 3, 4, 5, 6, 7, 49, 32, 40, 41, 42, 37, 18],
|
319 |
+
[37, 38, 39, 40, 41, 42], # left eye
|
320 |
+
[18, 19, 20, 21, 22, 28, 40, 39, 38, 37],
|
321 |
+
[28, 29, 30, 31, 32, 40],
|
322 |
+
]
|
323 |
+
areas_asym = [
|
324 |
+
[20, 21, 22, 28, 23, 24, 25], # old [22, 23, 28],
|
325 |
+
[31, 32, 33, 34, 35, 36],
|
326 |
+
[32, 33, 34, 35, 36, 55, 54, 53, 52, 51, 50, 49],
|
327 |
+
[49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60],
|
328 |
+
[7, 8, 9, 10, 11, 55, 56, 57, 58, 59, 60, 49],
|
329 |
+
]
|
330 |
+
|
331 |
+
def init(self, **kwargs):
|
332 |
+
# super().__init__(**kwargs)
|
333 |
+
|
334 |
+
sym, _ = landmarks_68_symmetries()
|
335 |
+
# construct list of points paths
|
336 |
+
paths = []
|
337 |
+
paths += self.areas_asym # asymmetrical areas
|
338 |
+
paths += self.areas # left
|
339 |
+
paths += [[sym[ld68_id] for ld68_id in area] for area in self.areas] # right
|
340 |
+
assert len(paths) == self.total
|
341 |
+
self.paths = paths
|
342 |
+
|
343 |
+
@property
|
344 |
+
def total(self) -> int:
|
345 |
+
total = len(self.areas_asym) + len(self.areas) * 2
|
346 |
+
return total
|
347 |
+
|
348 |
+
def transform_landmarks(self, landmarks):
|
349 |
+
"""Transform landmarks to extend the eyebrow points up the forehead"""
|
350 |
+
new_landmarks = landmarks.copy()
|
351 |
+
# mid points between the side of face and eye point
|
352 |
+
ml_pnt = (new_landmarks[36] + new_landmarks[0]) // 2
|
353 |
+
mr_pnt = (new_landmarks[16] + new_landmarks[45]) // 2
|
354 |
+
|
355 |
+
# mid points between the mid points and eye
|
356 |
+
ql_pnt = (new_landmarks[36] + ml_pnt) // 2
|
357 |
+
qr_pnt = (new_landmarks[45] + mr_pnt) // 2
|
358 |
+
|
359 |
+
# Top of the eye arrays
|
360 |
+
bot_l = np.array(
|
361 |
+
(
|
362 |
+
ql_pnt,
|
363 |
+
new_landmarks[36],
|
364 |
+
new_landmarks[37],
|
365 |
+
new_landmarks[38],
|
366 |
+
new_landmarks[39],
|
367 |
+
)
|
368 |
+
)
|
369 |
+
bot_r = np.array(
|
370 |
+
(
|
371 |
+
new_landmarks[42],
|
372 |
+
new_landmarks[43],
|
373 |
+
new_landmarks[44],
|
374 |
+
new_landmarks[45],
|
375 |
+
qr_pnt,
|
376 |
+
)
|
377 |
+
)
|
378 |
+
|
379 |
+
# Eyebrow arrays
|
380 |
+
top_l = new_landmarks[17:22]
|
381 |
+
top_r = new_landmarks[22:27]
|
382 |
+
|
383 |
+
# Adjust eyebrow arrays
|
384 |
+
new_landmarks[17:22] = top_l + ((top_l - bot_l) // 2)
|
385 |
+
new_landmarks[22:27] = top_r + ((top_r - bot_r) // 2)
|
386 |
+
|
387 |
+
return new_landmarks
|
388 |
+
|
389 |
+
def build_mask(self) -> np.ndarray:
|
390 |
+
self.init()
|
391 |
+
h, w = self.face.shape[:2]
|
392 |
+
|
393 |
+
path = self.paths[self.idx]
|
394 |
+
new_landmarks = self.transform_landmarks(self.landmarks)
|
395 |
+
points = [new_landmarks[ld68_id - 1] for ld68_id in path]
|
396 |
+
points = np.array(points, dtype=np.int32)
|
397 |
+
|
398 |
+
# cv2.fillConvexPoly(out, points, 255, lineType=4)
|
399 |
+
mask = np.zeros((h, w), dtype=np.uint8)
|
400 |
+
cv2.fillPoly(mask, [points], 255)
|
401 |
+
mask = mask.reshape([mask.shape[0],mask.shape[1], 1])
|
402 |
+
return mask
|
training/dataset/utils/SLADD.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
from functools import reduce
|
3 |
+
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
from scipy.ndimage import binary_dilation
|
7 |
+
|
8 |
+
from .DeepFakeMask import Mask
|
9 |
+
|
10 |
+
|
11 |
+
def dist(a, b):
|
12 |
+
x1, y1 = a
|
13 |
+
x2, y2 = b
|
14 |
+
return np.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
|
15 |
+
# return np.linalg.norm(a-b)
|
16 |
+
|
17 |
+
|
18 |
+
def get_five_key(landmarks_68):
|
19 |
+
# get the five key points by using the landmarks
|
20 |
+
leye_center = (landmarks_68[36] + landmarks_68[39]) * 0.5
|
21 |
+
reye_center = (landmarks_68[42] + landmarks_68[45]) * 0.5
|
22 |
+
nose = landmarks_68[33]
|
23 |
+
lmouth = landmarks_68[48]
|
24 |
+
rmouth = landmarks_68[54]
|
25 |
+
leye_left = landmarks_68[36]
|
26 |
+
leye_right = landmarks_68[39]
|
27 |
+
reye_left = landmarks_68[42]
|
28 |
+
reye_right = landmarks_68[45]
|
29 |
+
out = [
|
30 |
+
tuple(x.astype("int32"))
|
31 |
+
for x in [
|
32 |
+
leye_center,
|
33 |
+
reye_center,
|
34 |
+
nose,
|
35 |
+
lmouth,
|
36 |
+
rmouth,
|
37 |
+
leye_left,
|
38 |
+
leye_right,
|
39 |
+
reye_left,
|
40 |
+
reye_right,
|
41 |
+
]
|
42 |
+
]
|
43 |
+
return out
|
44 |
+
|
45 |
+
|
46 |
+
def remove_eyes(image, landmarks, opt):
|
47 |
+
##l: left eye; r: right eye, b: both eye
|
48 |
+
if opt == "l":
|
49 |
+
(x1, y1), (x2, y2) = landmarks[5:7]
|
50 |
+
elif opt == "r":
|
51 |
+
(x1, y1), (x2, y2) = landmarks[7:9]
|
52 |
+
elif opt == "b":
|
53 |
+
(x1, y1), (x2, y2) = landmarks[:2]
|
54 |
+
else:
|
55 |
+
print("wrong region")
|
56 |
+
mask = np.zeros_like(image[..., 0])
|
57 |
+
line = cv2.line(mask, (x1, y1), (x2, y2), color=(1), thickness=2)
|
58 |
+
w = dist((x1, y1), (x2, y2))
|
59 |
+
dilation = int(w // 4)
|
60 |
+
if opt != "b":
|
61 |
+
dilation *= 4
|
62 |
+
line = binary_dilation(line, iterations=dilation)
|
63 |
+
return line
|
64 |
+
|
65 |
+
|
66 |
+
def remove_nose(image, landmarks):
|
67 |
+
(x1, y1), (x2, y2) = landmarks[:2]
|
68 |
+
x3, y3 = landmarks[2]
|
69 |
+
mask = np.zeros_like(image[..., 0])
|
70 |
+
x4 = int((x1 + x2) / 2)
|
71 |
+
y4 = int((y1 + y2) / 2)
|
72 |
+
line = cv2.line(mask, (x3, y3), (x4, y4), color=(1), thickness=2)
|
73 |
+
w = dist((x1, y1), (x2, y2))
|
74 |
+
dilation = int(w // 4)
|
75 |
+
line = binary_dilation(line, iterations=dilation)
|
76 |
+
return line
|
77 |
+
|
78 |
+
|
79 |
+
def remove_mouth(image, landmarks):
|
80 |
+
(x1, y1), (x2, y2) = landmarks[3:5]
|
81 |
+
mask = np.zeros_like(image[..., 0])
|
82 |
+
line = cv2.line(mask, (x1, y1), (x2, y2), color=(1), thickness=2)
|
83 |
+
w = dist((x1, y1), (x2, y2))
|
84 |
+
dilation = int(w // 3)
|
85 |
+
line = binary_dilation(line, iterations=dilation)
|
86 |
+
return line
|
87 |
+
|
88 |
+
|
89 |
+
class SladdRegion(Enum):
|
90 |
+
left_eye = 0
|
91 |
+
right_eye = 1
|
92 |
+
nose = 2
|
93 |
+
mouth = 3
|
94 |
+
# composition
|
95 |
+
both_eyes = left_eye + right_eye # 4
|
96 |
+
|
97 |
+
|
98 |
+
class SladdMasking(Mask):
|
99 |
+
|
100 |
+
# [0, 1, 2, 3, (0, 1), (0, 2), (1, 2), (2, 3), (0, 1, 2), (0, 1, 2, 3)]
|
101 |
+
# left-eye, right-eye, nose, mouth, ...
|
102 |
+
ALL_REGIONS = [
|
103 |
+
SladdRegion.left_eye,
|
104 |
+
SladdRegion.right_eye,
|
105 |
+
SladdRegion.nose,
|
106 |
+
SladdRegion.mouth,
|
107 |
+
]
|
108 |
+
REGIONS = [
|
109 |
+
[SladdRegion.left_eye],
|
110 |
+
[SladdRegion.right_eye],
|
111 |
+
[SladdRegion.nose],
|
112 |
+
[SladdRegion.mouth],
|
113 |
+
[SladdRegion.left_eye, SladdRegion.right_eye],
|
114 |
+
[SladdRegion.left_eye, SladdRegion.nose],
|
115 |
+
[SladdRegion.right_eye, SladdRegion.nose],
|
116 |
+
[SladdRegion.nose, SladdRegion.mouth],
|
117 |
+
[SladdRegion.left_eye, SladdRegion.right_eye, SladdRegion.nose],
|
118 |
+
ALL_REGIONS,
|
119 |
+
]
|
120 |
+
|
121 |
+
def init(self, compose: bool = False, single: bool = True, **kwargs):
|
122 |
+
# super().__init__(**kwargs)
|
123 |
+
self.compose = compose
|
124 |
+
if compose:
|
125 |
+
self.regions = SladdMasking.REGIONS
|
126 |
+
else:
|
127 |
+
self.regions = [reg for reg in SladdMasking.REGIONS if len(reg) == 1]
|
128 |
+
if single:
|
129 |
+
self.regions = [self.ALL_REGIONS]
|
130 |
+
|
131 |
+
@property
|
132 |
+
def total(self) -> int:
|
133 |
+
return len(self.regions)
|
134 |
+
|
135 |
+
@staticmethod
|
136 |
+
def parse(img, reg, landmarks) -> np.ndarray:
|
137 |
+
five_key = get_five_key(landmarks)
|
138 |
+
if reg is SladdRegion.left_eye:
|
139 |
+
mask = remove_eyes(img, five_key, "l")
|
140 |
+
elif reg is SladdRegion.right_eye:
|
141 |
+
mask = remove_eyes(img, five_key, "r")
|
142 |
+
elif reg is SladdRegion.nose:
|
143 |
+
mask = remove_nose(img, five_key)
|
144 |
+
elif reg is SladdRegion.mouth:
|
145 |
+
mask = remove_mouth(img, five_key)
|
146 |
+
else:
|
147 |
+
raise ValueError("Invalid region")
|
148 |
+
# elif reg == SladdRegion4:
|
149 |
+
# mask = remove_eyes(img, five_key, "b")
|
150 |
+
return mask
|
151 |
+
|
152 |
+
def build_mask(self) -> np.ndarray:
|
153 |
+
self.init()
|
154 |
+
h, w = self.face.shape[:2]
|
155 |
+
# print(len(self.regions))
|
156 |
+
regs = [self.regions[0][self.idx]]
|
157 |
+
# if isinstance(reg, int):
|
158 |
+
# mask = parse(img, reg, landmarks)
|
159 |
+
masks = [SladdMasking.parse(self.face, reg, self.landmarks) for reg in regs]
|
160 |
+
mask = reduce(np.maximum, masks)
|
161 |
+
mask = mask.reshape([mask.shape[0],mask.shape[1], 1])
|
162 |
+
|
163 |
+
return mask
|
training/dataset/utils/attribution_mask.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import math
|
5 |
+
import numpy as np
|
6 |
+
from scipy.ndimage import binary_erosion, binary_dilation
|
7 |
+
def dist(p1, p2):
|
8 |
+
return math.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2)
|
9 |
+
|
10 |
+
def remove_mouth(image, landmarks):
|
11 |
+
(x1, y1), (x2, y2) = landmarks[3:5]
|
12 |
+
mask = np.zeros_like(image[..., 0])
|
13 |
+
line = cv2.line(mask, (x1, y1), (x2, y2), color=(1), thickness=2)
|
14 |
+
w = dist((x1, y1), (x2, y2))
|
15 |
+
dilation = int(w // 3)
|
16 |
+
line = binary_dilation(line, iterations=dilation)
|
17 |
+
return line
|
18 |
+
|
19 |
+
def remove_eyes(image, landmarks, opt='b'):
|
20 |
+
##l: left eye; r: right eye, b: both eye
|
21 |
+
if opt == 'l':
|
22 |
+
(x1, y1), (x2, y2) = landmarks[36],landmarks[39]
|
23 |
+
elif opt == 'r':
|
24 |
+
(x1, y1), (x2, y2) = landmarks[42],landmarks[46]
|
25 |
+
elif opt == 'b':
|
26 |
+
(x1, y1), (x2, y2) = landmarks[36],landmarks[46]
|
27 |
+
else:
|
28 |
+
print('wrong region')
|
29 |
+
mask = np.zeros_like(image[..., 0])
|
30 |
+
line = cv2.line(np.array(mask, dtype=np.uint8), (int(x1), int(y1)), (int(x2), int(y2)), color=(1), thickness=2)
|
31 |
+
w = dist((x1, y1), (x2, y2))
|
32 |
+
dilation = int(w // 4)
|
33 |
+
if opt != 'b':
|
34 |
+
dilation *= 4
|
35 |
+
line = binary_dilation(line, iterations=dilation)
|
36 |
+
return line
|
37 |
+
|
38 |
+
def remove_nose(image, landmarks):
|
39 |
+
##l: left eye; r: right eye, b: both eye
|
40 |
+
|
41 |
+
(x1, y1), (x2, y2) = landmarks[27], landmarks[30]
|
42 |
+
mask = np.zeros_like(image[..., 0])
|
43 |
+
line = cv2.line(np.array(mask, dtype=np.uint8), (int(x1), int(y1)), (int(x2), int(y2)), color=(1), thickness=2)
|
44 |
+
w = dist((x1, y1), (x2, y2))
|
45 |
+
dilation = int(w // 3)
|
46 |
+
line1 = binary_dilation(line, iterations=dilation)
|
47 |
+
|
48 |
+
(x1, y1), (x2, y2) = landmarks[31], landmarks[35]
|
49 |
+
mask = np.zeros_like(image[..., 0])
|
50 |
+
line = cv2.line(np.array(mask, dtype=np.uint8), (int(x1), int(y1)), (int(x2), int(y2)), color=(1), thickness=2)
|
51 |
+
w = dist((x1, y1), (x2, y2))
|
52 |
+
dilation = int(w //4 )
|
53 |
+
line2 = binary_dilation(line, iterations=dilation)
|
54 |
+
|
55 |
+
return line1+line2
|
training/dataset/utils/bi_online_generation.py
ADDED
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dlib
|
2 |
+
from skimage import io
|
3 |
+
from skimage import transform as sktransform
|
4 |
+
import numpy as np
|
5 |
+
from matplotlib import pyplot as plt
|
6 |
+
import json
|
7 |
+
import os
|
8 |
+
import random
|
9 |
+
from PIL import Image
|
10 |
+
from imgaug import augmenters as iaa
|
11 |
+
from dataset.library.DeepFakeMask import dfl_full,facehull,components,extended
|
12 |
+
from dataset.utils.attribution_mask import *
|
13 |
+
import cv2
|
14 |
+
import tqdm
|
15 |
+
|
16 |
+
'''
|
17 |
+
from PIL import ImageDraw
|
18 |
+
# 创建一个可以在图像上绘制的对象
|
19 |
+
img_pil=Image.fromarray(img)
|
20 |
+
draw = ImageDraw.Draw(img_pil)
|
21 |
+
|
22 |
+
# 在图像上绘制点
|
23 |
+
for i, point in enumerate(landmark):
|
24 |
+
x, y = point
|
25 |
+
radius = 1 # 点的半径
|
26 |
+
draw.ellipse((x-radius, y-radius, x+radius, y+radius), fill="red")
|
27 |
+
draw.text((x+radius+2, y-radius), str(i), fill="black") # 在点旁边添加标签
|
28 |
+
img_pil.show()
|
29 |
+
'''
|
30 |
+
|
31 |
+
|
32 |
+
def name_resolve(path):
|
33 |
+
name = os.path.splitext(os.path.basename(path))[0]
|
34 |
+
vid_id, frame_id = name.split('_')[0:2]
|
35 |
+
return vid_id, frame_id
|
36 |
+
|
37 |
+
def total_euclidean_distance(a,b):
|
38 |
+
assert len(a.shape) == 2
|
39 |
+
return np.sum(np.linalg.norm(a-b,axis=1))
|
40 |
+
|
41 |
+
def get_five_key(landmarks_68):
|
42 |
+
# get the five key points by using the landmarks
|
43 |
+
leye_center = (landmarks_68[36] + landmarks_68[39])*0.5
|
44 |
+
reye_center = (landmarks_68[42] + landmarks_68[45])*0.5
|
45 |
+
nose = landmarks_68[33]
|
46 |
+
lmouth = landmarks_68[48]
|
47 |
+
rmouth = landmarks_68[54]
|
48 |
+
leye_left = landmarks_68[36]
|
49 |
+
leye_right = landmarks_68[39]
|
50 |
+
reye_left = landmarks_68[42]
|
51 |
+
reye_right = landmarks_68[45]
|
52 |
+
out = [ tuple(x.astype('int32')) for x in [
|
53 |
+
leye_center,reye_center,nose,lmouth,rmouth,leye_left,leye_right,reye_left,reye_right
|
54 |
+
]]
|
55 |
+
return out
|
56 |
+
|
57 |
+
def random_get_hull(landmark,img1,hull_type=None):
|
58 |
+
if hull_type==None:
|
59 |
+
hull_type = random.choice([0,1,2,3])
|
60 |
+
if hull_type == 0:
|
61 |
+
mask = dfl_full(landmarks=landmark.astype('int32'),face=img1, channels=3).mask
|
62 |
+
return mask[:,:,0]/255
|
63 |
+
elif hull_type == 1:
|
64 |
+
mask = extended(landmarks=landmark.astype('int32'),face=img1, channels=3).mask
|
65 |
+
return mask[:,:,0]/255
|
66 |
+
elif hull_type == 2:
|
67 |
+
mask = components(landmarks=landmark.astype('int32'),face=img1, channels=3).mask
|
68 |
+
return mask[:,:,0]/255
|
69 |
+
elif hull_type == 3:
|
70 |
+
mask = facehull(landmarks=landmark.astype('int32'),face=img1, channels=3).mask
|
71 |
+
return mask[:,:,0]/255
|
72 |
+
elif hull_type == 4:
|
73 |
+
mask = remove_mouth(img1,get_five_key(landmark))
|
74 |
+
return mask.astype(np.float32)
|
75 |
+
elif hull_type == 5:
|
76 |
+
mask = remove_eyes(img1,landmark)
|
77 |
+
return mask.astype(np.float32)
|
78 |
+
elif hull_type == 6:
|
79 |
+
mask = remove_nose(img1,landmark)
|
80 |
+
return mask.astype(np.float32)
|
81 |
+
elif hull_type == 7:
|
82 |
+
mask = remove_nose(img1,landmark) + remove_eyes(img1,landmark) + remove_mouth(img1,get_five_key(landmark))
|
83 |
+
return mask.astype(np.float32)
|
84 |
+
|
85 |
+
|
86 |
+
def random_erode_dilate(mask, ksize=None):
|
87 |
+
if random.random()>0.5:
|
88 |
+
if ksize is None:
|
89 |
+
ksize = random.randint(1,21)
|
90 |
+
if ksize % 2 == 0:
|
91 |
+
ksize += 1
|
92 |
+
mask = np.array(mask).astype(np.uint8)*255
|
93 |
+
kernel = np.ones((ksize,ksize),np.uint8)
|
94 |
+
mask = cv2.erode(mask,kernel,1)/255
|
95 |
+
else:
|
96 |
+
if ksize is None:
|
97 |
+
ksize = random.randint(1,5)
|
98 |
+
if ksize % 2 == 0:
|
99 |
+
ksize += 1
|
100 |
+
mask = np.array(mask).astype(np.uint8)*255
|
101 |
+
kernel = np.ones((ksize,ksize),np.uint8)
|
102 |
+
mask = cv2.dilate(mask,kernel,1)/255
|
103 |
+
return mask
|
104 |
+
|
105 |
+
|
106 |
+
# borrow from https://github.com/MarekKowalski/FaceSwap
|
107 |
+
def blendImages(src, dst, mask, featherAmount=0.2):
|
108 |
+
|
109 |
+
maskIndices = np.where(mask != 0)
|
110 |
+
|
111 |
+
src_mask = np.ones_like(mask)
|
112 |
+
dst_mask = np.zeros_like(mask)
|
113 |
+
|
114 |
+
maskPts = np.hstack((maskIndices[1][:, np.newaxis], maskIndices[0][:, np.newaxis]))
|
115 |
+
faceSize = np.max(maskPts, axis=0) - np.min(maskPts, axis=0)
|
116 |
+
featherAmount = featherAmount * np.max(faceSize)
|
117 |
+
|
118 |
+
hull = cv2.convexHull(maskPts)
|
119 |
+
dists = np.zeros(maskPts.shape[0])
|
120 |
+
for i in range(maskPts.shape[0]):
|
121 |
+
dists[i] = cv2.pointPolygonTest(hull, (maskPts[i, 0], maskPts[i, 1]), True)
|
122 |
+
|
123 |
+
weights = np.clip(dists / featherAmount, 0, 1)
|
124 |
+
|
125 |
+
composedImg = np.copy(dst)
|
126 |
+
composedImg[maskIndices[0], maskIndices[1]] = weights[:, np.newaxis] * src[maskIndices[0], maskIndices[1]] + (1 - weights[:, np.newaxis]) * dst[maskIndices[0], maskIndices[1]]
|
127 |
+
|
128 |
+
composedMask = np.copy(dst_mask)
|
129 |
+
composedMask[maskIndices[0], maskIndices[1]] = weights[:, np.newaxis] * src_mask[maskIndices[0], maskIndices[1]] + (
|
130 |
+
1 - weights[:, np.newaxis]) * dst_mask[maskIndices[0], maskIndices[1]]
|
131 |
+
|
132 |
+
return composedImg, composedMask
|
133 |
+
|
134 |
+
|
135 |
+
# borrow from https://github.com/MarekKowalski/FaceSwap
|
136 |
+
def colorTransfer(src, dst, mask):
|
137 |
+
transferredDst = np.copy(dst)
|
138 |
+
|
139 |
+
maskIndices = np.where(mask != 0)
|
140 |
+
|
141 |
+
|
142 |
+
maskedSrc = src[maskIndices[0], maskIndices[1]].astype(np.int32)
|
143 |
+
maskedDst = dst[maskIndices[0], maskIndices[1]].astype(np.int32)
|
144 |
+
|
145 |
+
meanSrc = np.mean(maskedSrc, axis=0)
|
146 |
+
meanDst = np.mean(maskedDst, axis=0)
|
147 |
+
|
148 |
+
maskedDst = maskedDst - meanDst
|
149 |
+
maskedDst = maskedDst + meanSrc
|
150 |
+
maskedDst = np.clip(maskedDst, 0, 255)
|
151 |
+
|
152 |
+
transferredDst[maskIndices[0], maskIndices[1]] = maskedDst
|
153 |
+
|
154 |
+
return transferredDst
|
155 |
+
|
156 |
+
class BIOnlineGeneration():
|
157 |
+
def __init__(self):
|
158 |
+
with open('precomuted_landmarks.json', 'r') as f:
|
159 |
+
self.landmarks_record = json.load(f)
|
160 |
+
for k,v in self.landmarks_record.items():
|
161 |
+
self.landmarks_record[k] = np.array(v)
|
162 |
+
# extract all frame from all video in the name of {videoid}_{frameid}
|
163 |
+
self.data_list = [
|
164 |
+
'000_0000.png',
|
165 |
+
'001_0000.png'
|
166 |
+
] * 10000
|
167 |
+
|
168 |
+
# predefine mask distortion
|
169 |
+
self.distortion = iaa.Sequential([iaa.PiecewiseAffine(scale=(0.01, 0.15))])
|
170 |
+
|
171 |
+
def gen_one_datapoint(self):
|
172 |
+
background_face_path = random.choice(self.data_list)
|
173 |
+
data_type = 'real' if random.randint(0,1) else 'fake'
|
174 |
+
if data_type == 'fake' :
|
175 |
+
face_img,mask = self.get_blended_face(background_face_path)
|
176 |
+
mask = ( 1 - mask ) * mask * 4
|
177 |
+
else:
|
178 |
+
face_img = io.imread(background_face_path)
|
179 |
+
mask = np.zeros((317, 317, 1))
|
180 |
+
|
181 |
+
# randomly downsample after BI pipeline
|
182 |
+
if random.randint(0,1):
|
183 |
+
aug_size = random.randint(64, 317)
|
184 |
+
face_img = Image.fromarray(face_img)
|
185 |
+
if random.randint(0,1):
|
186 |
+
face_img = face_img.resize((aug_size, aug_size), Image.BILINEAR)
|
187 |
+
else:
|
188 |
+
face_img = face_img.resize((aug_size, aug_size), Image.NEAREST)
|
189 |
+
face_img = face_img.resize((317, 317),Image.BILINEAR)
|
190 |
+
face_img = np.array(face_img)
|
191 |
+
|
192 |
+
# random jpeg compression after BI pipeline
|
193 |
+
if random.randint(0,1):
|
194 |
+
quality = random.randint(60, 100)
|
195 |
+
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), quality]
|
196 |
+
face_img_encode = cv2.imencode('.jpg', face_img, encode_param)[1]
|
197 |
+
face_img = cv2.imdecode(face_img_encode, cv2.IMREAD_COLOR)
|
198 |
+
|
199 |
+
face_img = face_img[60:317,30:287,:]
|
200 |
+
mask = mask[60:317,30:287,:]
|
201 |
+
|
202 |
+
# random flip
|
203 |
+
if random.randint(0,1):
|
204 |
+
face_img = np.flip(face_img,1)
|
205 |
+
mask = np.flip(mask,1)
|
206 |
+
|
207 |
+
return face_img,mask,data_type
|
208 |
+
|
209 |
+
def get_blended_face(self,background_face_path):
|
210 |
+
background_face = io.imread(background_face_path)
|
211 |
+
background_landmark = self.landmarks_record[background_face_path]
|
212 |
+
|
213 |
+
foreground_face_path = self.search_similar_face(background_landmark,background_face_path)
|
214 |
+
foreground_face = io.imread(foreground_face_path)
|
215 |
+
|
216 |
+
# down sample before blending
|
217 |
+
aug_size = random.randint(128,317)
|
218 |
+
background_landmark = background_landmark * (aug_size/317)
|
219 |
+
foreground_face = sktransform.resize(foreground_face,(aug_size,aug_size),preserve_range=True).astype(np.uint8)
|
220 |
+
background_face = sktransform.resize(background_face,(aug_size,aug_size),preserve_range=True).astype(np.uint8)
|
221 |
+
|
222 |
+
# get random type of initial blending mask
|
223 |
+
mask = random_get_hull(background_landmark, background_face)
|
224 |
+
|
225 |
+
# random deform mask
|
226 |
+
mask = self.distortion.augment_image(mask)
|
227 |
+
mask = random_erode_dilate(mask)
|
228 |
+
|
229 |
+
# filte empty mask after deformation
|
230 |
+
if np.sum(mask) == 0 :
|
231 |
+
raise NotImplementedError
|
232 |
+
|
233 |
+
# apply color transfer
|
234 |
+
foreground_face = colorTransfer(background_face, foreground_face, mask*255)
|
235 |
+
|
236 |
+
# blend two face
|
237 |
+
blended_face, mask = blendImages(foreground_face, background_face, mask*255)
|
238 |
+
blended_face = blended_face.astype(np.uint8)
|
239 |
+
|
240 |
+
# resize back to default resolution
|
241 |
+
blended_face = sktransform.resize(blended_face,(317,317),preserve_range=True).astype(np.uint8)
|
242 |
+
mask = sktransform.resize(mask,(317,317),preserve_range=True)
|
243 |
+
mask = mask[:,:,0:1]
|
244 |
+
return blended_face,mask
|
245 |
+
|
246 |
+
def search_similar_face(self,this_landmark,background_face_path):
|
247 |
+
vid_id, frame_id = name_resolve(background_face_path)
|
248 |
+
min_dist = 99999999
|
249 |
+
|
250 |
+
# random sample 5000 frame from all frams:
|
251 |
+
all_candidate_path = random.sample( self.data_list, k=5000)
|
252 |
+
|
253 |
+
# filter all frame that comes from the same video as background face
|
254 |
+
all_candidate_path = filter(lambda k:name_resolve(k)[0] != vid_id, all_candidate_path)
|
255 |
+
all_candidate_path = list(all_candidate_path)
|
256 |
+
|
257 |
+
# loop throungh all candidates frame to get best match
|
258 |
+
for candidate_path in all_candidate_path:
|
259 |
+
candidate_landmark = self.landmarks_record[candidate_path].astype(np.float32)
|
260 |
+
candidate_distance = total_euclidean_distance(candidate_landmark, this_landmark)
|
261 |
+
if candidate_distance < min_dist:
|
262 |
+
min_dist = candidate_distance
|
263 |
+
min_path = candidate_path
|
264 |
+
|
265 |
+
return min_path
|
266 |
+
|
267 |
+
if __name__ == '__main__':
|
268 |
+
ds = BIOnlineGeneration()
|
269 |
+
from tqdm import tqdm
|
270 |
+
all_imgs = []
|
271 |
+
for _ in tqdm(range(50)):
|
272 |
+
img,mask,label = ds.gen_one_datapoint()
|
273 |
+
mask = np.repeat(mask,3,2)
|
274 |
+
mask = (mask*255).astype(np.uint8)
|
275 |
+
img_cat = np.concatenate([img,mask],1)
|
276 |
+
all_imgs.append(img_cat)
|
277 |
+
all_in_one = Image.new('RGB', (2570,2570))
|
278 |
+
|
279 |
+
for x in range(5):
|
280 |
+
for y in range(10):
|
281 |
+
idx = x*10+y
|
282 |
+
im = Image.fromarray(all_imgs[idx])
|
283 |
+
|
284 |
+
dx = x*514
|
285 |
+
dy = y*257
|
286 |
+
|
287 |
+
all_in_one.paste(im, (dx,dy))
|
288 |
+
|
289 |
+
all_in_one.save("all_in_one.jpg")
|
training/dataset/utils/bi_online_generation_yzy.py
ADDED
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dlib
|
2 |
+
from skimage import io
|
3 |
+
from skimage import transform as sktransform
|
4 |
+
import numpy as np
|
5 |
+
from matplotlib import pyplot as plt
|
6 |
+
import json
|
7 |
+
import os
|
8 |
+
import random
|
9 |
+
from PIL import Image
|
10 |
+
from imgaug import augmenters as iaa
|
11 |
+
from .DeepFakeMask import dfl_full,facehull,components,extended,gridMasking,MeshgridMasking, facehull2
|
12 |
+
from .SLADD import SladdMasking
|
13 |
+
import cv2
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
import tqdm
|
17 |
+
import pdb
|
18 |
+
|
19 |
+
|
20 |
+
def name_resolve(path):
|
21 |
+
name = os.path.splitext(os.path.basename(path))[0]
|
22 |
+
vid_id, frame_id = name.split('_')[0:2]
|
23 |
+
return vid_id, frame_id
|
24 |
+
|
25 |
+
def total_euclidean_distance(a,b):
|
26 |
+
assert len(a.shape) == 2
|
27 |
+
return np.sum(np.linalg.norm(a-b,axis=1))
|
28 |
+
|
29 |
+
def random_get_hull(landmark,img1,hull_type0, idx=0):
|
30 |
+
# print("in bi online generation----------",hull_type0)
|
31 |
+
if hull_type0 == -1:
|
32 |
+
hull_type = random.choice([0,1,2,3])
|
33 |
+
else:
|
34 |
+
# hull_type = int(random.choice(hull_type0))
|
35 |
+
hull_type = hull_type0
|
36 |
+
# print(hull_type)
|
37 |
+
if hull_type == 0:
|
38 |
+
# print("here")
|
39 |
+
mask = dfl_full(landmarks=landmark.astype('int32'),face=img1, channels=3).mask
|
40 |
+
return mask/255, idx
|
41 |
+
elif hull_type == 1:
|
42 |
+
mask = extended(landmarks=landmark.astype('int32'),face=img1, channels=3).mask
|
43 |
+
return mask/255, idx
|
44 |
+
elif hull_type == 2:
|
45 |
+
mask = components(landmarks=landmark.astype('int32'),face=img1, channels=3).mask
|
46 |
+
return mask/255, idx
|
47 |
+
elif hull_type == 3:
|
48 |
+
mask = facehull(landmarks=landmark.astype('int32'),face=img1, channels=3).mask
|
49 |
+
return mask/255, idx # --change0628-- mask/255
|
50 |
+
|
51 |
+
# elif hull_type == 4: # SLADD
|
52 |
+
# mask = SladdMasking(landmarks=landmark.astype('int32'),face=img1, channels=3, idx=0).mask
|
53 |
+
# return mask/1., idx
|
54 |
+
# elif hull_type == 5: # SLADD
|
55 |
+
# mask = SladdMasking(landmarks=landmark.astype('int32'),face=img1, channels=3, idx=1).mask
|
56 |
+
# return mask/1., idx
|
57 |
+
# elif hull_type == 6: # SLADD
|
58 |
+
# mask = SladdMasking(landmarks=landmark.astype('int32'),face=img1, channels=3, idx=2).mask
|
59 |
+
# return mask/1., idx
|
60 |
+
elif hull_type == 6: # SLADD/mouth
|
61 |
+
mask = SladdMasking(landmarks=landmark.astype('int32'),face=img1, channels=3, idx=3).mask
|
62 |
+
return mask/1., idx
|
63 |
+
|
64 |
+
|
65 |
+
def random_erode_dilate(mask, ksize=None):
|
66 |
+
if random.random()>0.5:
|
67 |
+
if ksize is None:
|
68 |
+
ksize = random.randint(1,21)
|
69 |
+
if ksize % 2 == 0:
|
70 |
+
ksize += 1
|
71 |
+
mask = np.array(mask).astype(np.uint8)*255
|
72 |
+
kernel = np.ones((ksize,ksize),np.uint8)
|
73 |
+
mask = cv2.erode(mask,kernel,1)/255
|
74 |
+
else:
|
75 |
+
if ksize is None:
|
76 |
+
ksize = random.randint(1,5)
|
77 |
+
if ksize % 2 == 0:
|
78 |
+
ksize += 1
|
79 |
+
mask = np.array(mask).astype(np.uint8)*255
|
80 |
+
kernel = np.ones((ksize,ksize),np.uint8)
|
81 |
+
mask = cv2.dilate(mask,kernel,1)/255
|
82 |
+
return mask
|
83 |
+
|
84 |
+
|
85 |
+
# borrow from https://github.com/MarekKowalski/FaceSwap
|
86 |
+
def blendImages(src, dst, mask, featherAmount=0.2):
|
87 |
+
|
88 |
+
maskIndices = np.where(mask != 0)
|
89 |
+
|
90 |
+
src_mask = np.ones_like(mask)
|
91 |
+
dst_mask = np.zeros_like(mask)
|
92 |
+
|
93 |
+
maskPts = np.hstack((maskIndices[1][:, np.newaxis], maskIndices[0][:, np.newaxis]))
|
94 |
+
faceSize = np.max(maskPts, axis=0) - np.min(maskPts, axis=0)
|
95 |
+
featherAmount = featherAmount * np.max(faceSize)
|
96 |
+
|
97 |
+
hull = cv2.convexHull(maskPts)
|
98 |
+
dists = np.zeros(maskPts.shape[0])
|
99 |
+
for i in range(maskPts.shape[0]):
|
100 |
+
dists[i] = cv2.pointPolygonTest(hull, (maskPts[i, 0], maskPts[i, 1]), True)
|
101 |
+
|
102 |
+
weights = np.clip(dists / featherAmount, 0, 1)
|
103 |
+
|
104 |
+
composedImg = np.copy(dst)
|
105 |
+
composedImg[maskIndices[0], maskIndices[1]] = weights[:, np.newaxis] * src[maskIndices[0], maskIndices[1]] + (1 - weights[:, np.newaxis]) * dst[maskIndices[0], maskIndices[1]]
|
106 |
+
|
107 |
+
composedMask = np.copy(dst_mask)
|
108 |
+
composedMask[maskIndices[0], maskIndices[1]] = weights[:, np.newaxis] * src_mask[maskIndices[0], maskIndices[1]] + (
|
109 |
+
1 - weights[:, np.newaxis]) * dst_mask[maskIndices[0], maskIndices[1]]
|
110 |
+
|
111 |
+
return composedImg, composedMask
|
112 |
+
|
113 |
+
|
114 |
+
# borrow from https://github.com/MarekKowalski/FaceSwap
|
115 |
+
def colorTransfer(src, dst, mask):
|
116 |
+
transferredDst = np.copy(dst)
|
117 |
+
|
118 |
+
maskIndices = np.where(mask != 0)
|
119 |
+
|
120 |
+
|
121 |
+
maskedSrc = src[maskIndices[0], maskIndices[1]].astype(np.int32)
|
122 |
+
maskedDst = dst[maskIndices[0], maskIndices[1]].astype(np.int32)
|
123 |
+
|
124 |
+
meanSrc = np.mean(maskedSrc, axis=0)
|
125 |
+
meanDst = np.mean(maskedDst, axis=0)
|
126 |
+
|
127 |
+
maskedDst = maskedDst - meanDst
|
128 |
+
maskedDst = maskedDst + meanSrc
|
129 |
+
maskedDst = np.clip(maskedDst, 0, 255)
|
130 |
+
|
131 |
+
transferredDst[maskIndices[0], maskIndices[1]] = maskedDst
|
132 |
+
|
133 |
+
return transferredDst
|
134 |
+
|
135 |
+
class BIOnlineGeneration():
|
136 |
+
def __init__(self):
|
137 |
+
with open('precomuted_landmarks.json', 'r') as f:
|
138 |
+
self.landmarks_record = json.load(f)
|
139 |
+
for k,v in self.landmarks_record.items():
|
140 |
+
self.landmarks_record[k] = np.array(v)
|
141 |
+
# extract all frame from all video in the name of {videoid}_{frameid}
|
142 |
+
self.data_list = [
|
143 |
+
'000_0000.png',
|
144 |
+
'001_0000.png'
|
145 |
+
] * 10000
|
146 |
+
|
147 |
+
# predefine mask distortion
|
148 |
+
self.distortion = iaa.Sequential([iaa.PiecewiseAffine(scale=(0.01, 0.15))])
|
149 |
+
|
150 |
+
def gen_one_datapoint(self):
|
151 |
+
background_face_path = random.choice(self.data_list)
|
152 |
+
data_type = 'real' if random.randint(0,1) else 'fake'
|
153 |
+
if data_type == 'fake' :
|
154 |
+
face_img,mask = self.get_blended_face(background_face_path)
|
155 |
+
mask = ( 1 - mask ) * mask * 4
|
156 |
+
else:
|
157 |
+
face_img = io.imread(background_face_path)
|
158 |
+
mask = np.zeros((317, 317, 1))
|
159 |
+
|
160 |
+
# randomly downsample after BI pipeline
|
161 |
+
if random.randint(0,1):
|
162 |
+
aug_size = random.randint(64, 317)
|
163 |
+
face_img = Image.fromarray(face_img)
|
164 |
+
if random.randint(0,1):
|
165 |
+
face_img = face_img.resize((aug_size, aug_size), Image.BILINEAR)
|
166 |
+
else:
|
167 |
+
face_img = face_img.resize((aug_size, aug_size), Image.NEAREST)
|
168 |
+
face_img = face_img.resize((317, 317),Image.BILINEAR)
|
169 |
+
face_img = np.array(face_img)
|
170 |
+
|
171 |
+
# random jpeg compression after BI pipeline
|
172 |
+
if random.randint(0,1):
|
173 |
+
quality = random.randint(60, 100)
|
174 |
+
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), quality]
|
175 |
+
face_img_encode = cv2.imencode('.jpg', face_img, encode_param)[1]
|
176 |
+
face_img = cv2.imdecode(face_img_encode, cv2.IMREAD_COLOR)
|
177 |
+
|
178 |
+
face_img = face_img[60:317,30:287,:]
|
179 |
+
mask = mask[60:317,30:287,:]
|
180 |
+
|
181 |
+
# random flip
|
182 |
+
if random.randint(0,1):
|
183 |
+
face_img = np.flip(face_img,1)
|
184 |
+
mask = np.flip(mask,1)
|
185 |
+
|
186 |
+
return face_img,mask,data_type
|
187 |
+
|
188 |
+
def get_blended_face(self,background_face_path):
|
189 |
+
background_face = io.imread(background_face_path)
|
190 |
+
background_landmark = self.landmarks_record[background_face_path]
|
191 |
+
|
192 |
+
foreground_face_path = self.search_similar_face(background_landmark,background_face_path)
|
193 |
+
foreground_face = io.imread(foreground_face_path)
|
194 |
+
|
195 |
+
# down sample before blending
|
196 |
+
aug_size = random.randint(128,317)
|
197 |
+
background_landmark = background_landmark * (aug_size/317)
|
198 |
+
foreground_face = sktransform.resize(foreground_face,(aug_size,aug_size),preserve_range=True).astype(np.uint8)
|
199 |
+
background_face = sktransform.resize(background_face,(aug_size,aug_size),preserve_range=True).astype(np.uint8)
|
200 |
+
|
201 |
+
# get random type of initial blending mask
|
202 |
+
mask, idx = random_get_hull(background_landmark, background_face)
|
203 |
+
|
204 |
+
# random deform mask
|
205 |
+
mask = self.distortion.augment_image(mask)
|
206 |
+
mask = random_erode_dilate(mask)
|
207 |
+
|
208 |
+
# filte empty mask after deformation
|
209 |
+
if np.sum(mask) == 0 :
|
210 |
+
raise NotImplementedError
|
211 |
+
|
212 |
+
# apply color transfer
|
213 |
+
foreground_face = colorTransfer(background_face, foreground_face, mask*255)
|
214 |
+
|
215 |
+
# blend two face
|
216 |
+
blended_face, mask = blendImages(foreground_face, background_face, mask*255)
|
217 |
+
blended_face = blended_face.astype(np.uint8)
|
218 |
+
|
219 |
+
# resize back to default resolution
|
220 |
+
blended_face = sktransform.resize(blended_face,(317,317),preserve_range=True).astype(np.uint8)
|
221 |
+
mask = sktransform.resize(mask,(317,317),preserve_range=True)
|
222 |
+
mask = mask[:,:,0:1]
|
223 |
+
return blended_face,mask
|
224 |
+
|
225 |
+
def search_similar_face(self,this_landmark,background_face_path):
|
226 |
+
vid_id, frame_id = name_resolve(background_face_path)
|
227 |
+
min_dist = 99999999
|
228 |
+
|
229 |
+
# random sample 5000 frame from all frams:
|
230 |
+
all_candidate_path = random.sample( self.data_list, k=5000)
|
231 |
+
|
232 |
+
# filter all frame that comes from the same video as background face
|
233 |
+
all_candidate_path = filter(lambda k:name_resolve(k)[0] != vid_id, all_candidate_path)
|
234 |
+
all_candidate_path = list(all_candidate_path)
|
235 |
+
|
236 |
+
# loop throungh all candidates frame to get best match
|
237 |
+
for candidate_path in all_candidate_path:
|
238 |
+
candidate_landmark = self.landmarks_record[candidate_path].astype(np.float32)
|
239 |
+
candidate_distance = total_euclidean_distance(candidate_landmark, this_landmark)
|
240 |
+
if candidate_distance < min_dist:
|
241 |
+
min_dist = candidate_distance
|
242 |
+
min_path = candidate_path
|
243 |
+
|
244 |
+
return min_path
|
245 |
+
|
246 |
+
if __name__ == '__main__':
|
247 |
+
ds = BIOnlineGeneration()
|
248 |
+
from tqdm import tqdm
|
249 |
+
all_imgs = []
|
250 |
+
for _ in tqdm(range(50)):
|
251 |
+
img,mask,label = ds.gen_one_datapoint()
|
252 |
+
mask = np.repeat(mask,3,2)
|
253 |
+
mask = (mask*255).astype(np.uint8)
|
254 |
+
img_cat = np.concatenate([img,mask],1)
|
255 |
+
all_imgs.append(img_cat)
|
256 |
+
all_in_one = Image.new('RGB', (2570,2570))
|
257 |
+
|
258 |
+
for x in range(5):
|
259 |
+
for y in range(10):
|
260 |
+
idx = x*10+y
|
261 |
+
im = Image.fromarray(all_imgs[idx])
|
262 |
+
|
263 |
+
dx = x*514
|
264 |
+
dy = y*257
|
265 |
+
|
266 |
+
all_in_one.paste(im, (dx,dy))
|
267 |
+
|
268 |
+
all_in_one.save("all_in_one.jpg")
|
training/dataset/utils/color_transfer.py
ADDED
@@ -0,0 +1,516 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from numpy import linalg as npla
|
4 |
+
|
5 |
+
import scipy as sp
|
6 |
+
import scipy.sparse
|
7 |
+
from scipy.sparse.linalg import spsolve
|
8 |
+
|
9 |
+
|
10 |
+
def color_transfer_sot(src, trg, steps=10, batch_size=5, reg_sigmaXY=16.0, reg_sigmaV=5.0):
|
11 |
+
"""
|
12 |
+
Color Transform via Sliced Optimal Transfer
|
13 |
+
ported by @iperov from https://github.com/dcoeurjo/OTColorTransfer
|
14 |
+
|
15 |
+
src - any float range any channel image
|
16 |
+
dst - any float range any channel image, same shape as src
|
17 |
+
steps - number of solver steps
|
18 |
+
batch_size - solver batch size
|
19 |
+
reg_sigmaXY - apply regularization and sigmaXY of filter, otherwise set to 0.0
|
20 |
+
reg_sigmaV - sigmaV of filter
|
21 |
+
|
22 |
+
return value - clip it manually
|
23 |
+
"""
|
24 |
+
if not np.issubdtype(src.dtype, np.floating):
|
25 |
+
raise ValueError("src value must be float")
|
26 |
+
if not np.issubdtype(trg.dtype, np.floating):
|
27 |
+
raise ValueError("trg value must be float")
|
28 |
+
|
29 |
+
if len(src.shape) != 3:
|
30 |
+
raise ValueError("src shape must have rank 3 (h,w,c)")
|
31 |
+
|
32 |
+
if src.shape != trg.shape:
|
33 |
+
raise ValueError("src and trg shapes must be equal")
|
34 |
+
|
35 |
+
src_dtype = src.dtype
|
36 |
+
h, w, c = src.shape
|
37 |
+
new_src = src.copy()
|
38 |
+
|
39 |
+
for step in range(steps):
|
40 |
+
advect = np.zeros((h*w, c), dtype=src_dtype)
|
41 |
+
for batch in range(batch_size):
|
42 |
+
dir = np.random.normal(size=c).astype(src_dtype)
|
43 |
+
dir /= npla.norm(dir)
|
44 |
+
|
45 |
+
projsource = np.sum(new_src*dir, axis=-1).reshape((h*w))
|
46 |
+
projtarget = np.sum(trg*dir, axis=-1).reshape((h*w))
|
47 |
+
|
48 |
+
idSource = np.argsort(projsource)
|
49 |
+
idTarget = np.argsort(projtarget)
|
50 |
+
|
51 |
+
a = projtarget[idTarget]-projsource[idSource]
|
52 |
+
for i_c in range(c):
|
53 |
+
advect[idSource, i_c] += a * dir[i_c]
|
54 |
+
new_src += advect.reshape((h, w, c)) / batch_size
|
55 |
+
|
56 |
+
if reg_sigmaXY != 0.0:
|
57 |
+
src_diff = new_src-src
|
58 |
+
src_diff_filt = cv2.bilateralFilter(
|
59 |
+
src_diff, 0, reg_sigmaV, reg_sigmaXY)
|
60 |
+
if len(src_diff_filt.shape) == 2:
|
61 |
+
src_diff_filt = src_diff_filt[..., None]
|
62 |
+
new_src = src + src_diff_filt
|
63 |
+
return new_src
|
64 |
+
|
65 |
+
|
66 |
+
def color_transfer_mkl(x0, x1):
|
67 |
+
eps = np.finfo(float).eps
|
68 |
+
|
69 |
+
h, w, c = x0.shape
|
70 |
+
h1, w1, c1 = x1.shape
|
71 |
+
|
72 |
+
x0 = x0.reshape((h*w, c))
|
73 |
+
x1 = x1.reshape((h1*w1, c1))
|
74 |
+
|
75 |
+
a = np.cov(x0.T)
|
76 |
+
b = np.cov(x1.T)
|
77 |
+
|
78 |
+
Da2, Ua = np.linalg.eig(a)
|
79 |
+
Da = np.diag(np.sqrt(Da2.clip(eps, None)))
|
80 |
+
|
81 |
+
C = np.dot(np.dot(np.dot(np.dot(Da, Ua.T), b), Ua), Da)
|
82 |
+
|
83 |
+
Dc2, Uc = np.linalg.eig(C)
|
84 |
+
Dc = np.diag(np.sqrt(Dc2.clip(eps, None)))
|
85 |
+
|
86 |
+
Da_inv = np.diag(1./(np.diag(Da)))
|
87 |
+
|
88 |
+
t = np.dot(
|
89 |
+
np.dot(np.dot(np.dot(np.dot(np.dot(Ua, Da_inv), Uc), Dc), Uc.T), Da_inv), Ua.T)
|
90 |
+
|
91 |
+
mx0 = np.mean(x0, axis=0)
|
92 |
+
mx1 = np.mean(x1, axis=0)
|
93 |
+
|
94 |
+
result = np.dot(x0-mx0, t) + mx1
|
95 |
+
return np.clip(result.reshape((h, w, c)).astype(x0.dtype), 0, 1)
|
96 |
+
|
97 |
+
|
98 |
+
def color_transfer_idt(i0, i1, bins=256, n_rot=20):
|
99 |
+
relaxation = 1 / n_rot
|
100 |
+
h, w, c = i0.shape
|
101 |
+
h1, w1, c1 = i1.shape
|
102 |
+
|
103 |
+
i0 = i0.reshape((h*w, c))
|
104 |
+
i1 = i1.reshape((h1*w1, c1))
|
105 |
+
|
106 |
+
n_dims = c
|
107 |
+
|
108 |
+
d0 = i0.T
|
109 |
+
d1 = i1.T
|
110 |
+
|
111 |
+
for i in range(n_rot):
|
112 |
+
|
113 |
+
r = sp.stats.special_ortho_group.rvs(n_dims).astype(np.float32)
|
114 |
+
|
115 |
+
d0r = np.dot(r, d0)
|
116 |
+
d1r = np.dot(r, d1)
|
117 |
+
d_r = np.empty_like(d0)
|
118 |
+
|
119 |
+
for j in range(n_dims):
|
120 |
+
|
121 |
+
lo = min(d0r[j].min(), d1r[j].min())
|
122 |
+
hi = max(d0r[j].max(), d1r[j].max())
|
123 |
+
|
124 |
+
p0r, edges = np.histogram(d0r[j], bins=bins, range=[lo, hi])
|
125 |
+
p1r, _ = np.histogram(d1r[j], bins=bins, range=[lo, hi])
|
126 |
+
|
127 |
+
cp0r = p0r.cumsum().astype(np.float32)
|
128 |
+
cp0r /= cp0r[-1]
|
129 |
+
|
130 |
+
cp1r = p1r.cumsum().astype(np.float32)
|
131 |
+
cp1r /= cp1r[-1]
|
132 |
+
|
133 |
+
f = np.interp(cp0r, cp1r, edges[1:])
|
134 |
+
|
135 |
+
d_r[j] = np.interp(d0r[j], edges[1:], f, left=0, right=bins)
|
136 |
+
|
137 |
+
d0 = relaxation * np.linalg.solve(r, (d_r - d0r)) + d0
|
138 |
+
|
139 |
+
return np.clip(d0.T.reshape((h, w, c)).astype(i0.dtype), 0, 1)
|
140 |
+
|
141 |
+
|
142 |
+
def laplacian_matrix(n, m):
|
143 |
+
mat_D = scipy.sparse.lil_matrix((m, m))
|
144 |
+
mat_D.setdiag(-1, -1)
|
145 |
+
mat_D.setdiag(4)
|
146 |
+
mat_D.setdiag(-1, 1)
|
147 |
+
mat_A = scipy.sparse.block_diag([mat_D] * n).tolil()
|
148 |
+
mat_A.setdiag(-1, 1*m)
|
149 |
+
mat_A.setdiag(-1, -1*m)
|
150 |
+
return mat_A
|
151 |
+
|
152 |
+
|
153 |
+
def seamless_clone(source, target, mask):
|
154 |
+
h, w, c = target.shape
|
155 |
+
result = []
|
156 |
+
|
157 |
+
mat_A = laplacian_matrix(h, w)
|
158 |
+
laplacian = mat_A.tocsc()
|
159 |
+
|
160 |
+
mask[0, :] = 1
|
161 |
+
mask[-1, :] = 1
|
162 |
+
mask[:, 0] = 1
|
163 |
+
mask[:, -1] = 1
|
164 |
+
q = np.argwhere(mask == 0)
|
165 |
+
|
166 |
+
k = q[:, 1]+q[:, 0]*w
|
167 |
+
mat_A[k, k] = 1
|
168 |
+
mat_A[k, k + 1] = 0
|
169 |
+
mat_A[k, k - 1] = 0
|
170 |
+
mat_A[k, k + w] = 0
|
171 |
+
mat_A[k, k - w] = 0
|
172 |
+
|
173 |
+
mat_A = mat_A.tocsc()
|
174 |
+
mask_flat = mask.flatten()
|
175 |
+
for channel in range(c):
|
176 |
+
|
177 |
+
source_flat = source[:, :, channel].flatten()
|
178 |
+
target_flat = target[:, :, channel].flatten()
|
179 |
+
|
180 |
+
mat_b = laplacian.dot(source_flat)*0.75
|
181 |
+
mat_b[mask_flat == 0] = target_flat[mask_flat == 0]
|
182 |
+
|
183 |
+
x = spsolve(mat_A, mat_b).reshape((h, w))
|
184 |
+
result.append(x)
|
185 |
+
|
186 |
+
return np.clip(np.dstack(result), 0, 1)
|
187 |
+
|
188 |
+
|
189 |
+
def reinhard_color_transfer(target, source, clip=False, preserve_paper=False, source_mask=None, target_mask=None):
|
190 |
+
"""
|
191 |
+
Transfers the color distribution from the source to the target
|
192 |
+
image using the mean and standard deviations of the L*a*b*
|
193 |
+
color space.
|
194 |
+
|
195 |
+
This implementation is (loosely) based on to the "Color Transfer
|
196 |
+
between Images" paper by Reinhard et al., 2001.
|
197 |
+
|
198 |
+
Parameters:
|
199 |
+
-------
|
200 |
+
source: NumPy array
|
201 |
+
OpenCV image in BGR color space (the source image)
|
202 |
+
target: NumPy array
|
203 |
+
OpenCV image in BGR color space (the target image)
|
204 |
+
clip: Should components of L*a*b* image be scaled by np.clip before
|
205 |
+
converting back to BGR color space?
|
206 |
+
If False then components will be min-max scaled appropriately.
|
207 |
+
Clipping will keep target image brightness truer to the input.
|
208 |
+
Scaling will adjust image brightness to avoid washed out portions
|
209 |
+
in the resulting color transfer that can be caused by clipping.
|
210 |
+
preserve_paper: Should color transfer strictly follow methodology
|
211 |
+
layed out in original paper? The method does not always produce
|
212 |
+
aesthetically pleasing results.
|
213 |
+
If False then L*a*b* components will scaled using the reciprocal of
|
214 |
+
the scaling factor proposed in the paper. This method seems to produce
|
215 |
+
more consistently aesthetically pleasing results
|
216 |
+
|
217 |
+
Returns:
|
218 |
+
-------
|
219 |
+
transfer: NumPy array
|
220 |
+
OpenCV image (w, h, 3) NumPy array (uint8)
|
221 |
+
"""
|
222 |
+
|
223 |
+
# convert the images from the RGB to L*ab* color space, being
|
224 |
+
# sure to utilizing the floating point data type (note: OpenCV
|
225 |
+
# expects floats to be 32-bit, so use that instead of 64-bit)
|
226 |
+
source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB).astype(np.float32)
|
227 |
+
target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB).astype(np.float32)
|
228 |
+
|
229 |
+
# compute color statistics for the source and target images
|
230 |
+
src_input = source if source_mask is None else source*source_mask
|
231 |
+
tgt_input = target if target_mask is None else target*target_mask
|
232 |
+
(lMeanSrc, lStdSrc, aMeanSrc, aStdSrc,
|
233 |
+
bMeanSrc, bStdSrc) = lab_image_stats(src_input)
|
234 |
+
(lMeanTar, lStdTar, aMeanTar, aStdTar,
|
235 |
+
bMeanTar, bStdTar) = lab_image_stats(tgt_input)
|
236 |
+
|
237 |
+
# subtract the means from the target image
|
238 |
+
(l, a, b) = cv2.split(target)
|
239 |
+
l -= lMeanTar
|
240 |
+
a -= aMeanTar
|
241 |
+
b -= bMeanTar
|
242 |
+
|
243 |
+
if preserve_paper:
|
244 |
+
# scale by the standard deviations using paper proposed factor
|
245 |
+
l = (lStdTar / lStdSrc) * l
|
246 |
+
a = (aStdTar / aStdSrc) * a
|
247 |
+
b = (bStdTar / bStdSrc) * b
|
248 |
+
else:
|
249 |
+
# scale by the standard deviations using reciprocal of paper proposed factor
|
250 |
+
l = (lStdSrc / lStdTar) * l
|
251 |
+
a = (aStdSrc / aStdTar) * a
|
252 |
+
b = (bStdSrc / bStdTar) * b
|
253 |
+
|
254 |
+
# add in the source mean
|
255 |
+
l += lMeanSrc
|
256 |
+
a += aMeanSrc
|
257 |
+
b += bMeanSrc
|
258 |
+
|
259 |
+
# clip/scale the pixel intensities to [0, 255] if they fall
|
260 |
+
# outside this range
|
261 |
+
l = _scale_array(l, clip=clip)
|
262 |
+
a = _scale_array(a, clip=clip)
|
263 |
+
b = _scale_array(b, clip=clip)
|
264 |
+
|
265 |
+
# merge the channels together and convert back to the RGB color
|
266 |
+
# space, being sure to utilize the 8-bit unsigned integer data
|
267 |
+
# type
|
268 |
+
transfer = cv2.merge([l, a, b])
|
269 |
+
transfer = cv2.cvtColor(transfer.astype(np.uint8), cv2.COLOR_LAB2BGR)
|
270 |
+
|
271 |
+
# return the color transferred image
|
272 |
+
return transfer
|
273 |
+
|
274 |
+
|
275 |
+
def linear_color_transfer(target_img, source_img, mode='pca', eps=1e-5):
|
276 |
+
'''
|
277 |
+
Matches the colour distribution of the target image to that of the source image
|
278 |
+
using a linear transform.
|
279 |
+
Images are expected to be of form (w,h,c) and float in [0,1].
|
280 |
+
Modes are chol, pca or sym for different choices of basis.
|
281 |
+
'''
|
282 |
+
mu_t = target_img.mean(0).mean(0)
|
283 |
+
t = target_img - mu_t
|
284 |
+
t = t.transpose(2, 0, 1).reshape(t.shape[-1], -1)
|
285 |
+
Ct = t.dot(t.T) / t.shape[1] + eps * np.eye(t.shape[0])
|
286 |
+
mu_s = source_img.mean(0).mean(0)
|
287 |
+
s = source_img - mu_s
|
288 |
+
s = s.transpose(2, 0, 1).reshape(s.shape[-1], -1)
|
289 |
+
Cs = s.dot(s.T) / s.shape[1] + eps * np.eye(s.shape[0])
|
290 |
+
if mode == 'chol':
|
291 |
+
chol_t = np.linalg.cholesky(Ct)
|
292 |
+
chol_s = np.linalg.cholesky(Cs)
|
293 |
+
ts = chol_s.dot(np.linalg.inv(chol_t)).dot(t)
|
294 |
+
if mode == 'pca':
|
295 |
+
eva_t, eve_t = np.linalg.eigh(Ct)
|
296 |
+
Qt = eve_t.dot(np.sqrt(np.diag(eva_t))).dot(eve_t.T)
|
297 |
+
eva_s, eve_s = np.linalg.eigh(Cs)
|
298 |
+
Qs = eve_s.dot(np.sqrt(np.diag(eva_s))).dot(eve_s.T)
|
299 |
+
ts = Qs.dot(np.linalg.inv(Qt)).dot(t)
|
300 |
+
if mode == 'sym':
|
301 |
+
eva_t, eve_t = np.linalg.eigh(Ct)
|
302 |
+
Qt = eve_t.dot(np.sqrt(np.diag(eva_t))).dot(eve_t.T)
|
303 |
+
Qt_Cs_Qt = Qt.dot(Cs).dot(Qt)
|
304 |
+
eva_QtCsQt, eve_QtCsQt = np.linalg.eigh(Qt_Cs_Qt)
|
305 |
+
QtCsQt = eve_QtCsQt.dot(np.sqrt(np.diag(eva_QtCsQt))).dot(eve_QtCsQt.T)
|
306 |
+
ts = np.linalg.inv(Qt).dot(QtCsQt).dot(np.linalg.inv(Qt)).dot(t)
|
307 |
+
matched_img = ts.reshape(
|
308 |
+
*target_img.transpose(2, 0, 1).shape).transpose(1, 2, 0)
|
309 |
+
matched_img += mu_s
|
310 |
+
matched_img[matched_img > 1] = 1
|
311 |
+
matched_img[matched_img < 0] = 0
|
312 |
+
return np.clip(matched_img.astype(source_img.dtype), 0, 1)
|
313 |
+
|
314 |
+
|
315 |
+
def lab_image_stats(image):
|
316 |
+
# compute the mean and standard deviation of each channel
|
317 |
+
(l, a, b) = cv2.split(image)
|
318 |
+
(lMean, lStd) = (l.mean(), l.std())
|
319 |
+
(aMean, aStd) = (a.mean(), a.std())
|
320 |
+
(bMean, bStd) = (b.mean(), b.std())
|
321 |
+
|
322 |
+
# return the color statistics
|
323 |
+
return (lMean, lStd, aMean, aStd, bMean, bStd)
|
324 |
+
|
325 |
+
|
326 |
+
def _scale_array(arr, clip=True):
|
327 |
+
if clip:
|
328 |
+
return np.clip(arr, 0, 255)
|
329 |
+
|
330 |
+
mn = arr.min()
|
331 |
+
mx = arr.max()
|
332 |
+
scale_range = (max([mn, 0]), min([mx, 255]))
|
333 |
+
|
334 |
+
if mn < scale_range[0] or mx > scale_range[1]:
|
335 |
+
return (scale_range[1] - scale_range[0]) * (arr - mn) / (mx - mn) + scale_range[0]
|
336 |
+
|
337 |
+
return arr
|
338 |
+
|
339 |
+
|
340 |
+
def channel_hist_match(source, template, hist_match_threshold=255, mask=None):
|
341 |
+
# Code borrowed from:
|
342 |
+
# https://stackoverflow.com/questions/32655686/histogram-matching-of-two-images-in-python-2-x
|
343 |
+
masked_source = source
|
344 |
+
masked_template = template
|
345 |
+
|
346 |
+
if mask is not None:
|
347 |
+
masked_source = source * mask
|
348 |
+
masked_template = template * mask
|
349 |
+
|
350 |
+
oldshape = source.shape
|
351 |
+
source = source.ravel()
|
352 |
+
template = template.ravel()
|
353 |
+
masked_source = masked_source.ravel()
|
354 |
+
masked_template = masked_template.ravel()
|
355 |
+
s_values, bin_idx, s_counts = np.unique(source, return_inverse=True,
|
356 |
+
return_counts=True)
|
357 |
+
t_values, t_counts = np.unique(template, return_counts=True)
|
358 |
+
|
359 |
+
s_quantiles = np.cumsum(s_counts).astype(np.float64)
|
360 |
+
s_quantiles = hist_match_threshold * s_quantiles / s_quantiles[-1]
|
361 |
+
t_quantiles = np.cumsum(t_counts).astype(np.float64)
|
362 |
+
t_quantiles = 255 * t_quantiles / t_quantiles[-1]
|
363 |
+
interp_t_values = np.interp(s_quantiles, t_quantiles, t_values)
|
364 |
+
|
365 |
+
return interp_t_values[bin_idx].reshape(oldshape)
|
366 |
+
|
367 |
+
|
368 |
+
def color_hist_match(src_im, tar_im, hist_match_threshold=255, mask=None):
|
369 |
+
h, w, c = src_im.shape
|
370 |
+
matched_R = channel_hist_match(
|
371 |
+
src_im[:, :, 0], tar_im[:, :, 0], hist_match_threshold, mask)
|
372 |
+
matched_G = channel_hist_match(
|
373 |
+
src_im[:, :, 1], tar_im[:, :, 1], hist_match_threshold, mask)
|
374 |
+
matched_B = channel_hist_match(
|
375 |
+
src_im[:, :, 2], tar_im[:, :, 2], hist_match_threshold, mask)
|
376 |
+
|
377 |
+
to_stack = (matched_R, matched_G, matched_B)
|
378 |
+
for i in range(3, c):
|
379 |
+
to_stack += (src_im[:, :, i],)
|
380 |
+
|
381 |
+
matched = np.stack(to_stack, axis=-1).astype(src_im.dtype)
|
382 |
+
return matched
|
383 |
+
|
384 |
+
|
385 |
+
def color_transfer_mix(img_src, img_trg):
|
386 |
+
img_src = np.clip(img_src*255.0, 0, 255).astype(np.uint8)
|
387 |
+
img_trg = np.clip(img_trg*255.0, 0, 255).astype(np.uint8)
|
388 |
+
|
389 |
+
img_src_lab = cv2.cvtColor(img_src, cv2.COLOR_BGR2LAB)
|
390 |
+
img_trg_lab = cv2.cvtColor(img_trg, cv2.COLOR_BGR2LAB)
|
391 |
+
|
392 |
+
rct_light = np.clip(linear_color_transfer(img_src_lab[..., 0:1].astype(np.float32)/255.0,
|
393 |
+
img_trg_lab[..., 0:1].astype(np.float32)/255.0)[..., 0]*255.0,
|
394 |
+
0, 255).astype(np.uint8)
|
395 |
+
|
396 |
+
img_src_lab[..., 0] = (np.ones_like(rct_light)*100).astype(np.uint8)
|
397 |
+
img_src_lab = cv2.cvtColor(img_src_lab, cv2.COLOR_LAB2BGR)
|
398 |
+
|
399 |
+
img_trg_lab[..., 0] = (np.ones_like(rct_light)*100).astype(np.uint8)
|
400 |
+
img_trg_lab = cv2.cvtColor(img_trg_lab, cv2.COLOR_LAB2BGR)
|
401 |
+
|
402 |
+
img_rct = color_transfer_sot(img_src_lab.astype(
|
403 |
+
np.float32), img_trg_lab.astype(np.float32))
|
404 |
+
img_rct = np.clip(img_rct, 0, 255).astype(np.uint8)
|
405 |
+
|
406 |
+
img_rct = cv2.cvtColor(img_rct, cv2.COLOR_BGR2LAB)
|
407 |
+
img_rct[..., 0] = rct_light
|
408 |
+
img_rct = cv2.cvtColor(img_rct, cv2.COLOR_LAB2BGR)
|
409 |
+
|
410 |
+
return (img_rct / 255.0).astype(np.float32)
|
411 |
+
|
412 |
+
|
413 |
+
def colorTransfer_fs(src_, dst_, mask):
|
414 |
+
src = dst_
|
415 |
+
dst = src_
|
416 |
+
transferredDst = np.copy(dst)
|
417 |
+
# indeksy nie czarnych pikseli maski
|
418 |
+
maskIndices = np.where(mask != 0)
|
419 |
+
# src[maskIndices[0], maskIndices[1]] zwraca piksele w nie czarnym obszarze maski
|
420 |
+
|
421 |
+
maskedSrc = src[maskIndices[0], maskIndices[1]].astype(np.int32)
|
422 |
+
maskedDst = dst[maskIndices[0], maskIndices[1]].astype(np.int32)
|
423 |
+
|
424 |
+
meanSrc = np.mean(maskedSrc, axis=0)
|
425 |
+
meanDst = np.mean(maskedDst, axis=0)
|
426 |
+
|
427 |
+
maskedDst = maskedDst - meanDst
|
428 |
+
maskedDst = maskedDst + meanSrc
|
429 |
+
maskedDst = np.clip(maskedDst, 0, 255)
|
430 |
+
|
431 |
+
transferredDst[maskIndices[0], maskIndices[1]] = maskedDst
|
432 |
+
return transferredDst
|
433 |
+
|
434 |
+
def colorTransfer_avg(img_src, img_tgt, mask=None):
|
435 |
+
img_new = img_src.copy()
|
436 |
+
img_old = img_tgt.copy()
|
437 |
+
# print(mask)
|
438 |
+
if mask is not None:
|
439 |
+
img_new = (img_new*mask)#.astype(np.uint8)
|
440 |
+
img_old = (img_old*mask)#.astype(np.uint8)
|
441 |
+
# cv2.imshow('tgt', img_old)
|
442 |
+
w,h,c = img_new.shape
|
443 |
+
for i in range(img_new.shape[2]):
|
444 |
+
old_avg = img_old[:, :, i].mean()
|
445 |
+
new_avg = img_new[:, :, i].mean()
|
446 |
+
diff_int = old_avg - new_avg
|
447 |
+
# print(diff_int)
|
448 |
+
for m in range(img_new.shape[0]):
|
449 |
+
for n in range(img_new.shape[1]):
|
450 |
+
temp = img_new[m,n,i] + diff_int
|
451 |
+
temp = max(0., temp)
|
452 |
+
temp = min(1., temp)
|
453 |
+
# print(img_new[m,n,i], temp)
|
454 |
+
img_new[m,n,i] = temp
|
455 |
+
|
456 |
+
return img_new
|
457 |
+
|
458 |
+
|
459 |
+
|
460 |
+
def color_transfer(ct_mode, img_src, img_trg, mask):
|
461 |
+
"""
|
462 |
+
color transfer for [0,1] float32 inputs
|
463 |
+
"""
|
464 |
+
img_src = img_src.astype(dtype=np.float32) / 255.0
|
465 |
+
img_trg = img_trg.astype(dtype=np.float32) / 255.0
|
466 |
+
|
467 |
+
if ct_mode == 'lct':
|
468 |
+
out = linear_color_transfer(img_src, img_trg)
|
469 |
+
elif ct_mode == 'rct':
|
470 |
+
out = reinhard_color_transfer(np.clip(img_src*255, 0, 255).astype(np.uint8),
|
471 |
+
np.clip(img_trg*255, 0,
|
472 |
+
255).astype(np.uint8),
|
473 |
+
preserve_paper=np.random.rand() < 0.5,
|
474 |
+
clip=np.random.rand() < 0.5)
|
475 |
+
out = np.clip(out.astype(np.float32) / 255.0, 0.0, 1.0)
|
476 |
+
elif ct_mode == 'rct-m':
|
477 |
+
out = reinhard_color_transfer(np.clip(img_src*255, 0, 255).astype(np.uint8),
|
478 |
+
np.clip(img_trg*255, 0,
|
479 |
+
255).astype(np.uint8),
|
480 |
+
source_mask=mask, target_mask=mask)
|
481 |
+
#preserve_paper=np.random.rand() < 0.5,
|
482 |
+
#clip=np.random.rand() < 0.5)
|
483 |
+
out = np.clip(out.astype(np.float32) / 255.0, 0.0, 1.0)
|
484 |
+
elif ct_mode == 'rct-fs':
|
485 |
+
out = colorTransfer_fs(np.clip(img_src*255, 0, 255).astype(np.uint8),
|
486 |
+
np.clip(img_trg*255, 0, 255).astype(np.uint8), mask)
|
487 |
+
out = np.clip(out.astype(np.float32) / 255.0, 0.0, 1.0)
|
488 |
+
elif ct_mode == 'mkl':
|
489 |
+
out = color_transfer_mkl(img_src, img_trg)
|
490 |
+
elif ct_mode == 'mkl-m':
|
491 |
+
out = color_transfer_mkl(img_src*mask, img_trg*mask)
|
492 |
+
elif ct_mode == 'idt':
|
493 |
+
out = color_transfer_idt(img_src, img_trg)
|
494 |
+
elif ct_mode == 'idt-m':
|
495 |
+
out = color_transfer_idt(img_src*mask, img_trg*mask)
|
496 |
+
elif ct_mode == 'sot':
|
497 |
+
out = color_transfer_sot(img_src, img_trg)
|
498 |
+
out = np.clip(out, 0.0, 1.0)
|
499 |
+
elif ct_mode == 'sot-m':
|
500 |
+
out = color_transfer_sot(
|
501 |
+
(img_src*mask).astype(np.float32), (img_trg*mask).astype(np.float32))
|
502 |
+
out = np.clip(out, 0.0, 1.0)
|
503 |
+
elif ct_mode == 'mix-m':
|
504 |
+
out = color_transfer_mix(img_src*mask, img_trg*mask)
|
505 |
+
elif ct_mode == 'seamless-hist-match':
|
506 |
+
out = color_hist_match(img_src, img_trg)
|
507 |
+
elif ct_mode == 'seamless-hist-match-m':
|
508 |
+
out = color_hist_match(img_src, img_trg, mask=mask)
|
509 |
+
elif ct_mode == 'avg-align':
|
510 |
+
out = colorTransfer_avg(img_src, img_trg, mask=mask)
|
511 |
+
out = np.clip(out, 0.0, 1.0)
|
512 |
+
else:
|
513 |
+
raise ValueError(f"unknown ct_mode {ct_mode}")
|
514 |
+
|
515 |
+
out = np.clip(out*255, 0, 255).astype(np.uint8)
|
516 |
+
return out
|