Spaces:
Runtime error
Runtime error
Commit
·
44efd89
1
Parent(s):
abc6589
update app.py for dowload from HF
Browse files- README.md +12 -0
- app.py +13 -10
- app_local.py +132 -0
- .gitattributes → gitattributes +0 -0
- requirements.txt +4 -21
README.md
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: DeepFake Videos Detection
|
| 3 |
+
emoji: 😻
|
| 4 |
+
colorFrom: red
|
| 5 |
+
colorTo: green
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 5.9.1
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
|
@@ -8,6 +8,7 @@ from tqdm import tqdm
|
|
| 8 |
from training.detectors import DETECTOR
|
| 9 |
import yaml
|
| 10 |
import gradio as gr
|
|
|
|
| 11 |
|
| 12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 13 |
|
|
@@ -17,7 +18,7 @@ AVAILABLE_MODELS = [
|
|
| 17 |
"ucf",
|
| 18 |
]
|
| 19 |
|
| 20 |
-
# load the model
|
| 21 |
def load_model(model_name, config_path, weights_path):
|
| 22 |
with open(config_path, 'r') as f:
|
| 23 |
config = yaml.safe_load(f)
|
|
@@ -55,9 +56,8 @@ def preprocess_video(video_path, output_dir, frame_num=32):
|
|
| 55 |
cap.release()
|
| 56 |
return frames
|
| 57 |
|
| 58 |
-
#
|
| 59 |
def infer_video(video_path, model, device):
|
| 60 |
-
# Preprocess the video
|
| 61 |
output_dir = "temp_video_frames"
|
| 62 |
frames = preprocess_video(video_path, output_dir)
|
| 63 |
|
|
@@ -90,18 +90,21 @@ def infer_video(video_path, model, device):
|
|
| 90 |
prediction = "Fake" if avg_prob > 0.5 else "Real"
|
| 91 |
return prediction, avg_prob
|
| 92 |
|
| 93 |
-
#
|
| 94 |
def gradio_inference(video, model_name):
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
| 97 |
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
return f"Error: Weights file for model '{model_name}' not found at {weights_path}."
|
| 102 |
|
|
|
|
| 103 |
model = load_model(model_name, config_path, weights_path)
|
| 104 |
|
|
|
|
| 105 |
prediction, confidence = infer_video(video, model, device)
|
| 106 |
return f"Model: {model_name}\nPrediction: {prediction} (Confidence: {confidence:.4f})"
|
| 107 |
|
|
|
|
| 8 |
from training.detectors import DETECTOR
|
| 9 |
import yaml
|
| 10 |
import gradio as gr
|
| 11 |
+
from huggingface_hub import hf_hub_download
|
| 12 |
|
| 13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 14 |
|
|
|
|
| 18 |
"ucf",
|
| 19 |
]
|
| 20 |
|
| 21 |
+
# load the model from HF Model Registry
|
| 22 |
def load_model(model_name, config_path, weights_path):
|
| 23 |
with open(config_path, 'r') as f:
|
| 24 |
config = yaml.safe_load(f)
|
|
|
|
| 56 |
cap.release()
|
| 57 |
return frames
|
| 58 |
|
| 59 |
+
# inference on a single video
|
| 60 |
def infer_video(video_path, model, device):
|
|
|
|
| 61 |
output_dir = "temp_video_frames"
|
| 62 |
frames = preprocess_video(video_path, output_dir)
|
| 63 |
|
|
|
|
| 90 |
prediction = "Fake" if avg_prob > 0.5 else "Real"
|
| 91 |
return prediction, avg_prob
|
| 92 |
|
| 93 |
+
# Gradio inference function
|
| 94 |
def gradio_inference(video, model_name):
|
| 95 |
+
# Download config and weights from Hugging Face Model Registry
|
| 96 |
+
repo_id = "ArissBandoss/deepfake-video-classifier"
|
| 97 |
+
config_filename = f"{model_name}.yaml"
|
| 98 |
+
weights_filename = f"{model_name}_best.pth"
|
| 99 |
|
| 100 |
+
# Download files
|
| 101 |
+
config_path = hf_hub_download(repo_id=repo_id, filename=config_filename)
|
| 102 |
+
weights_path = hf_hub_download(repo_id=repo_id, filename=weights_filename)
|
|
|
|
| 103 |
|
| 104 |
+
# Load the model
|
| 105 |
model = load_model(model_name, config_path, weights_path)
|
| 106 |
|
| 107 |
+
# Run inference
|
| 108 |
prediction, confidence = infer_video(video, model, device)
|
| 109 |
return f"Model: {model_name}\nPrediction: {prediction} (Confidence: {confidence:.4f})"
|
| 110 |
|
app_local.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from torchvision import transforms
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
from training.detectors import DETECTOR
|
| 9 |
+
import yaml
|
| 10 |
+
import gradio as gr
|
| 11 |
+
|
| 12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 13 |
+
|
| 14 |
+
# available models in the repository
|
| 15 |
+
AVAILABLE_MODELS = [
|
| 16 |
+
"xception",
|
| 17 |
+
"ucf",
|
| 18 |
+
]
|
| 19 |
+
|
| 20 |
+
# load the model
|
| 21 |
+
def load_model(model_name, config_path, weights_path):
|
| 22 |
+
with open(config_path, 'r') as f:
|
| 23 |
+
config = yaml.safe_load(f)
|
| 24 |
+
|
| 25 |
+
config['model_name'] = model_name
|
| 26 |
+
|
| 27 |
+
model_class = DETECTOR[model_name]
|
| 28 |
+
model = model_class(config).to(device)
|
| 29 |
+
|
| 30 |
+
checkpoint = torch.load(weights_path, map_location=device)
|
| 31 |
+
model.load_state_dict(checkpoint, strict=True)
|
| 32 |
+
model.eval()
|
| 33 |
+
return model
|
| 34 |
+
|
| 35 |
+
# preprocess a single video
|
| 36 |
+
def preprocess_video(video_path, output_dir, frame_num=32):
|
| 37 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 38 |
+
frames_dir = os.path.join(output_dir, "frames")
|
| 39 |
+
os.makedirs(frames_dir, exist_ok=True)
|
| 40 |
+
|
| 41 |
+
cap = cv2.VideoCapture(video_path)
|
| 42 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 43 |
+
frame_indices = np.linspace(0, total_frames - 1, frame_num, dtype=int)
|
| 44 |
+
|
| 45 |
+
# extract frames
|
| 46 |
+
frames = []
|
| 47 |
+
for idx in frame_indices:
|
| 48 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
|
| 49 |
+
ret, frame = cap.read()
|
| 50 |
+
if ret:
|
| 51 |
+
frame_path = os.path.join(frames_dir, f"frame_{idx:04d}.png")
|
| 52 |
+
cv2.imwrite(frame_path, frame)
|
| 53 |
+
frames.append(frame_path)
|
| 54 |
+
|
| 55 |
+
cap.release()
|
| 56 |
+
return frames
|
| 57 |
+
|
| 58 |
+
# inference on a single video
|
| 59 |
+
def infer_video(video_path, model, device):
|
| 60 |
+
# Preprocess the video
|
| 61 |
+
output_dir = "temp_video_frames"
|
| 62 |
+
frames = preprocess_video(video_path, output_dir)
|
| 63 |
+
|
| 64 |
+
transform = transforms.Compose([
|
| 65 |
+
transforms.Resize((256, 256)),
|
| 66 |
+
transforms.ToTensor(),
|
| 67 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
| 68 |
+
])
|
| 69 |
+
|
| 70 |
+
probs = []
|
| 71 |
+
for frame_path in frames:
|
| 72 |
+
frame = Image.open(frame_path).convert("RGB")
|
| 73 |
+
frame = transform(frame).unsqueeze(0).to(device)
|
| 74 |
+
|
| 75 |
+
data_dict = {
|
| 76 |
+
"image": frame,
|
| 77 |
+
"label": torch.tensor([0]).to(device), # Dummy label
|
| 78 |
+
"label_spe": torch.tensor([0]).to(device), # Dummy specific label
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
+
with torch.no_grad():
|
| 82 |
+
pred_dict = model(data_dict, inference=True)
|
| 83 |
+
|
| 84 |
+
logits = pred_dict["cls"] # Shape: [batch_size, num_classes]
|
| 85 |
+
prob = torch.softmax(logits, dim=1)[:, 1].item() # Probability of being "fake"
|
| 86 |
+
probs.append(prob)
|
| 87 |
+
|
| 88 |
+
# aggregate predictions (e.g., average probability)
|
| 89 |
+
avg_prob = np.mean(probs)
|
| 90 |
+
prediction = "Fake" if avg_prob > 0.5 else "Real"
|
| 91 |
+
return prediction, avg_prob
|
| 92 |
+
|
| 93 |
+
# gradio inference function
|
| 94 |
+
def gradio_inference(video, model_name):
|
| 95 |
+
config_path = f"/teamspace/studios/this_studio/DeepfakeBench/training/config/detector/{model_name}.yaml"
|
| 96 |
+
weights_path = f"/teamspace/studios/this_studio/DeepfakeBench/training/weights/{model_name}_best.pth"
|
| 97 |
+
|
| 98 |
+
if not os.path.exists(config_path):
|
| 99 |
+
return f"Error: Config file for model '{model_name}' not found at {config_path}."
|
| 100 |
+
if not os.path.exists(weights_path):
|
| 101 |
+
return f"Error: Weights file for model '{model_name}' not found at {weights_path}."
|
| 102 |
+
|
| 103 |
+
model = load_model(model_name, config_path, weights_path)
|
| 104 |
+
|
| 105 |
+
prediction, confidence = infer_video(video, model, device)
|
| 106 |
+
return f"Model: {model_name}\nPrediction: {prediction} (Confidence: {confidence:.4f})"
|
| 107 |
+
|
| 108 |
+
# Gradio App
|
| 109 |
+
def create_gradio_app():
|
| 110 |
+
with gr.Blocks() as demo:
|
| 111 |
+
gr.Markdown("# Deepfake Detection Demo")
|
| 112 |
+
gr.Markdown("Upload a video and select a model to detect if it's real or fake.")
|
| 113 |
+
|
| 114 |
+
with gr.Row():
|
| 115 |
+
video_input = gr.Video(label="Upload Video")
|
| 116 |
+
model_dropdown = gr.Dropdown(choices=AVAILABLE_MODELS, label="Select Model", value="xception")
|
| 117 |
+
|
| 118 |
+
output_text = gr.Textbox(label="Prediction Result")
|
| 119 |
+
|
| 120 |
+
submit_button = gr.Button("Run Inference")
|
| 121 |
+
submit_button.click(
|
| 122 |
+
fn=gradio_inference,
|
| 123 |
+
inputs=[video_input, model_dropdown],
|
| 124 |
+
outputs=output_text,
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
return demo
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
if __name__ == "__main__":
|
| 131 |
+
demo = create_gradio_app()
|
| 132 |
+
demo.launch(share=True)
|
.gitattributes → gitattributes
RENAMED
|
File without changes
|
requirements.txt
CHANGED
|
@@ -1,33 +1,16 @@
|
|
|
|
|
| 1 |
numpy==1.21.5
|
| 2 |
-
pandas==1.4.2
|
| 3 |
Pillow==9.0.1
|
| 4 |
-
|
| 5 |
-
imageio==2.9.0
|
| 6 |
-
imgaug==0.4.0
|
| 7 |
tqdm==4.61.0
|
| 8 |
-
scipy==1.7.3
|
| 9 |
-
seaborn==0.11.2
|
| 10 |
pyyaml==6.0
|
| 11 |
-
|
| 12 |
-
opencv-python==4.6.0.66
|
| 13 |
scikit-image==0.19.2
|
| 14 |
scikit-learn==1.0.2
|
| 15 |
albumentations==1.1.0
|
| 16 |
torch==1.12.0
|
| 17 |
torchvision==0.13.0
|
| 18 |
-
torchaudio==0.12.0
|
| 19 |
efficientnet-pytorch==0.7.1
|
| 20 |
timm==0.6.12
|
| 21 |
-
segmentation-models-pytorch==0.3.2
|
| 22 |
-
torchtoolbox==0.1.8.2
|
| 23 |
-
tensorboard==2.10.1
|
| 24 |
-
setuptools==59.5.0
|
| 25 |
-
loralib
|
| 26 |
-
einops
|
| 27 |
transformers
|
| 28 |
-
|
| 29 |
-
simplejson
|
| 30 |
-
kornia
|
| 31 |
-
fvcore
|
| 32 |
-
imgaug==0.4.0
|
| 33 |
-
git+https://github.com/openai/CLIP.git
|
|
|
|
| 1 |
+
huggingface_hub
|
| 2 |
numpy==1.21.5
|
|
|
|
| 3 |
Pillow==9.0.1
|
| 4 |
+
opencv-python==4.6.0.66
|
|
|
|
|
|
|
| 5 |
tqdm==4.61.0
|
|
|
|
|
|
|
| 6 |
pyyaml==6.0
|
| 7 |
+
scipy==1.7.3
|
|
|
|
| 8 |
scikit-image==0.19.2
|
| 9 |
scikit-learn==1.0.2
|
| 10 |
albumentations==1.1.0
|
| 11 |
torch==1.12.0
|
| 12 |
torchvision==0.13.0
|
|
|
|
| 13 |
efficientnet-pytorch==0.7.1
|
| 14 |
timm==0.6.12
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
transformers
|
| 16 |
+
gradio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|