Spaces:
Sleeping
Sleeping
File size: 6,459 Bytes
5e69a9a 935eb54 4ce3fbc 5e69a9a 935eb54 5e69a9a e5dcce7 5e69a9a 935eb54 5e69a9a 935eb54 5e69a9a 935eb54 5e69a9a 935eb54 5e69a9a 935eb54 5e69a9a 935eb54 5e69a9a 935eb54 5e69a9a e053256 5e69a9a 935eb54 381b7d4 5e69a9a 381b7d4 5e69a9a 381b7d4 5e69a9a 381b7d4 5e69a9a 32f8b07 5e69a9a 32f8b07 5e69a9a 32f8b07 5e69a9a 32f8b07 5e69a9a 32f8b07 5e69a9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
from fastapi import FastAPI, UploadFile, File
from PIL import Image
import os
import uvicorn
import torch
import numpy as np
from io import BytesIO
from torchvision import transforms, models
import torch.nn as nn
from huggingface_hub import hf_hub_download
import tempfile
from pathlib import Path
import pydicom
CACHE_DIR = Path("/huggingface/cache")
HF_CACHE_DIR = Path("/huggingface/cache")
os.environ["TRANSFORMERS_CACHE"] = str(HF_CACHE_DIR)
os.environ["HF_HOME"] = str(HF_CACHE_DIR.parent)
os.environ["HF_HUB_CACHE"] = str(HF_CACHE_DIR)
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
CACHE_DIR.mkdir(parents=True, exist_ok=True)
app = FastAPI()
preprocessDensenet = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(p=0.3),
transforms.RandomAffine(
degrees=(-15, 15),
translate=(0.1, 0.1),
scale=(0.85, 1.15),
fill=0
),
transforms.RandomApply([
transforms.ColorJitter(
brightness=0.2,
contrast=0.2
)
], p=0.3),
transforms.RandomApply([
transforms.GaussianBlur(kernel_size=3)
], p=0.2),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
transforms.RandomErasing(p=0.1)
])
preprocessResnet = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomAffine(
degrees=(-10, 10),
translate=(0.1, 0.1),
scale=(0.9, 1.1),
fill=0
),
transforms.RandomApply([
transforms.ColorJitter(
brightness=0.3,
contrast=0.3
)
], p=0.3),
transforms.RandomApply([
transforms.GaussianBlur(kernel_size=3)
], p=0.2),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
transforms.RandomErasing(p=0.2)
])
preprocessGooglenet = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(p=0.3),
transforms.RandomAffine(
degrees=(-5, 5),
translate=(0.05, 0.05),
scale=(0.95, 1.05),
fill=0
),
transforms.RandomApply([
transforms.ColorJitter(
brightness=0.2,
contrast=0.2
)
], p=0.3),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
def create_densenet169():
model = models.densenet169(pretrained=False)
model.classifier = nn.Sequential(
nn.BatchNorm1d(model.classifier.in_features),
nn.Dropout(p=0.4),
nn.Linear(model.classifier.in_features, 512),
nn.ReLU(),
nn.Dropout(p=0.3),
nn.Linear(512, 2)
)
return model
def create_resnet18():
model = models.resnet18(pretrained=False)
model.fc = nn.Sequential(
nn.Dropout(p=0.5),
nn.Linear(model.fc.in_features, 2)
)
return model
def create_googlenet():
model = models.googlenet(pretrained=False)
model.aux1 = None
model.aux2 = None
model.fc = nn.Sequential(
nn.Dropout(p=0.5),
nn.Linear(model.fc.in_features, 2)
)
return model
def load_model_from_hf(repo_id, model_creator):
try:
model_path = hf_hub_download(
repo_id=repo_id,
filename="model.pth",
cache_dir=CACHE_DIR
)
model = model_creator()
checkpoint = torch.load(model_path, map_location=torch.device('cpu'))
if "model_state_dict" in checkpoint:
state_dict = checkpoint["model_state_dict"]
else:
state_dict = checkpoint
model.load_state_dict(state_dict)
model.eval()
return model
except Exception as e:
print(f"Error loading model from {repo_id}: {str(e)}")
return None
modelss = {"Densenet169": None, "Resnet18": None, "Googlenet": None}
modelss["Densenet169"] = load_model_from_hf(
"Arham-Irfan/Densenet169_pnuemonia_binaryclassification",
create_densenet169
)
modelss["Resnet18"] = load_model_from_hf(
"Arham-Irfan/Resnet18_pnuemonia_binaryclassification",
create_resnet18
)
modelss["Googlenet"] = load_model_from_hf(
"Arham-Irfan/Googlenet_pnuemonia_binaryclassification",
create_googlenet
)
classes = ["Normal", "Pneumonia"]
def convert_dicom_to_rgb(dicom_path):
dicom_data = pydicom.dcmread(dicom_path)
img_array = dicom_data.pixel_array
img_array = (img_array - np.min(img_array)) / (np.max(img_array) - np.min(img_array)) * 255
img_array = img_array.astype(np.uint8)
if len(img_array.shape) == 2:
img_array = np.stack([img_array] * 3, axis=-1)
return Image.fromarray(img_array)
@app.post("/predict")
async def predict_pneumonia(file: UploadFile = File(...)):
try:
# Check file type
file_bytes = await file.read()
file_ext = file.filename.split(".")[-1].lower()
if file_ext == "dcm":
temp_path = f"/tmp/{file.filename}"
with open(temp_path, "wb") as f:
f.write(file_bytes)
image = convert_dicom_to_rgb(temp_path)
else:
image = Image.open(BytesIO(file_bytes)).convert("RGB")
# Preprocess for each model
img_tensor1 = preprocessDensenet(image).unsqueeze(0)
img_tensor2 = preprocessResnet(image).unsqueeze(0)
img_tensor3 = preprocessGooglenet(image).unsqueeze(0)
with torch.no_grad():
output1 = torch.softmax(modelss["Densenet169"](img_tensor1), dim=1).numpy()[0]
output2 = torch.softmax(modelss["Resnet18"](img_tensor2), dim=1).numpy()[0]
output3 = torch.softmax(modelss["Googlenet"](img_tensor3), dim=1).numpy()[0]
weights = [0.45, 0.33, 0.22]
ensemble_prob = weights[0] * output1 + weights[1] * output2 + weights[2] * output3
pred_index = np.argmax(ensemble_prob)
return {
"prediction": classes[pred_index],
"confidence": float(ensemble_prob[pred_index]),
"model_details": {
"Densenet169": float(output1[pred_index]),
"Resnet18": float(output2[pred_index]),
"Googlenet": float(output3[pred_index])
}
}
except Exception as e:
return {"error": f"Prediction error: {str(e)}"}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860) |