File size: 6,459 Bytes
5e69a9a
 
 
 
 
 
 
935eb54
4ce3fbc
5e69a9a
 
 
935eb54
5e69a9a
e5dcce7
 
 
 
 
 
 
 
5e69a9a
 
 
 
 
935eb54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e69a9a
 
935eb54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e69a9a
 
935eb54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e69a9a
 
 
 
935eb54
 
 
 
 
 
5e69a9a
 
 
 
 
 
935eb54
 
5e69a9a
 
 
 
 
 
 
 
935eb54
 
5e69a9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
935eb54
5e69a9a
 
 
 
 
e053256
5e69a9a
 
935eb54
381b7d4
5e69a9a
381b7d4
5e69a9a
 
 
381b7d4
5e69a9a
 
 
381b7d4
5e69a9a
 
 
 
 
 
32f8b07
 
 
 
 
 
 
 
 
 
 
 
5e69a9a
 
 
32f8b07
 
 
 
 
 
 
 
 
 
 
 
 
5e69a9a
 
 
 
 
32f8b07
 
 
5e69a9a
 
32f8b07
5e69a9a
 
 
 
 
 
 
 
 
 
 
 
 
 
32f8b07
 
5e69a9a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from fastapi import FastAPI, UploadFile, File 
from PIL import Image
import os
import uvicorn
import torch
import numpy as np
from io import BytesIO
from torchvision import transforms, models
import torch.nn as nn
from huggingface_hub import hf_hub_download
import tempfile
from pathlib import Path
import pydicom

CACHE_DIR = Path("/huggingface/cache")
HF_CACHE_DIR = Path("/huggingface/cache")

os.environ["TRANSFORMERS_CACHE"] = str(HF_CACHE_DIR)
os.environ["HF_HOME"] = str(HF_CACHE_DIR.parent)
os.environ["HF_HUB_CACHE"] = str(HF_CACHE_DIR)
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"

CACHE_DIR.mkdir(parents=True, exist_ok=True)

app = FastAPI()

preprocessDensenet = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.RandomHorizontalFlip(p=0.3),
    transforms.RandomAffine(
        degrees=(-15, 15),
        translate=(0.1, 0.1),
        scale=(0.85, 1.15),
        fill=0
    ),
    transforms.RandomApply([
        transforms.ColorJitter(
            brightness=0.2,
            contrast=0.2
        )
    ], p=0.3),
    transforms.RandomApply([
        transforms.GaussianBlur(kernel_size=3)
    ], p=0.2),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    transforms.RandomErasing(p=0.1)
])

preprocessResnet = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.RandomHorizontalFlip(p=0.5),
    transforms.RandomAffine(
        degrees=(-10, 10),
        translate=(0.1, 0.1),
        scale=(0.9, 1.1),
        fill=0
    ),
    transforms.RandomApply([
        transforms.ColorJitter(
            brightness=0.3,
            contrast=0.3
        )
    ], p=0.3),
    transforms.RandomApply([
        transforms.GaussianBlur(kernel_size=3)
    ], p=0.2),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    transforms.RandomErasing(p=0.2)
])

preprocessGooglenet = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.RandomHorizontalFlip(p=0.3),
    transforms.RandomAffine(
        degrees=(-5, 5),
        translate=(0.05, 0.05),
        scale=(0.95, 1.05),
        fill=0
    ),
    transforms.RandomApply([
        transforms.ColorJitter(
            brightness=0.2,
            contrast=0.2
        )
    ], p=0.3),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

def create_densenet169():
    model = models.densenet169(pretrained=False)
    model.classifier = nn.Sequential(
        nn.BatchNorm1d(model.classifier.in_features),
        nn.Dropout(p=0.4),
        nn.Linear(model.classifier.in_features, 512),
        nn.ReLU(),
        nn.Dropout(p=0.3),
        nn.Linear(512, 2)
    )
    return model

def create_resnet18():
    model = models.resnet18(pretrained=False)
    model.fc = nn.Sequential(
        nn.Dropout(p=0.5),
        nn.Linear(model.fc.in_features, 2)
    )
    return model

def create_googlenet():
    model = models.googlenet(pretrained=False)
    model.aux1 = None
    model.aux2 = None
    model.fc = nn.Sequential(
        nn.Dropout(p=0.5),
        nn.Linear(model.fc.in_features, 2)
    )
    return model

def load_model_from_hf(repo_id, model_creator):
    try:
        model_path = hf_hub_download(
            repo_id=repo_id,
            filename="model.pth",
            cache_dir=CACHE_DIR
        )
        model = model_creator()
        checkpoint = torch.load(model_path, map_location=torch.device('cpu'))
        
        if "model_state_dict" in checkpoint:
            state_dict = checkpoint["model_state_dict"]
        else:
            state_dict = checkpoint
        
        model.load_state_dict(state_dict)
        model.eval()
        return model
    except Exception as e:
        print(f"Error loading model from {repo_id}: {str(e)}")
        return None


modelss = {"Densenet169": None, "Resnet18": None, "Googlenet": None}

modelss["Densenet169"] = load_model_from_hf(
    "Arham-Irfan/Densenet169_pnuemonia_binaryclassification",
    create_densenet169
)
modelss["Resnet18"] = load_model_from_hf(
    "Arham-Irfan/Resnet18_pnuemonia_binaryclassification",
    create_resnet18
)
modelss["Googlenet"] = load_model_from_hf(
    "Arham-Irfan/Googlenet_pnuemonia_binaryclassification",
    create_googlenet
)

classes = ["Normal", "Pneumonia"]

def convert_dicom_to_rgb(dicom_path):
    dicom_data = pydicom.dcmread(dicom_path)
    img_array = dicom_data.pixel_array

    img_array = (img_array - np.min(img_array)) / (np.max(img_array) - np.min(img_array)) * 255
    img_array = img_array.astype(np.uint8)

    if len(img_array.shape) == 2:
        img_array = np.stack([img_array] * 3, axis=-1)

    return Image.fromarray(img_array)

@app.post("/predict")
async def predict_pneumonia(file: UploadFile = File(...)):
    try:
        # Check file type
        file_bytes = await file.read()
        file_ext = file.filename.split(".")[-1].lower()

        if file_ext == "dcm":
            temp_path = f"/tmp/{file.filename}"
            with open(temp_path, "wb") as f:
                f.write(file_bytes)
            image = convert_dicom_to_rgb(temp_path)
        else:
            image = Image.open(BytesIO(file_bytes)).convert("RGB")

        # Preprocess for each model
        img_tensor1 = preprocessDensenet(image).unsqueeze(0)
        img_tensor2 = preprocessResnet(image).unsqueeze(0)
        img_tensor3 = preprocessGooglenet(image).unsqueeze(0)

        with torch.no_grad():
            output1 = torch.softmax(modelss["Densenet169"](img_tensor1), dim=1).numpy()[0]
            output2 = torch.softmax(modelss["Resnet18"](img_tensor2), dim=1).numpy()[0]
            output3 = torch.softmax(modelss["Googlenet"](img_tensor3), dim=1).numpy()[0]

        weights = [0.45, 0.33, 0.22]
        ensemble_prob = weights[0] * output1 + weights[1] * output2 + weights[2] * output3
        pred_index = np.argmax(ensemble_prob)

        return {
            "prediction": classes[pred_index],
            "confidence": float(ensemble_prob[pred_index]),
            "model_details": {
                "Densenet169": float(output1[pred_index]),
                "Resnet18": float(output2[pred_index]),
                "Googlenet": float(output3[pred_index])
            }
        }
    except Exception as e:
        return {"error": f"Prediction error: {str(e)}"}



if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)