ocr_api / main.py
Arafath10's picture
Update main.py
7a1124b verified
raw
history blame
3.55 kB
try: from pip._internal.operations import freeze
except ImportError: # pip < 10.0
from pip.operations import freeze
pkgs = freeze.freeze()
for pkg in pkgs: print(pkg)
import os
from fastapi import FastAPI, HTTPException, File, UploadFile
from fastapi.middleware.cors import CORSMiddleware
from PyPDF2 import PdfReader
import google.generativeai as genai
import json
import base64
from io import BytesIO
from PIL import Image
import requests
secret = os.environ["key"]
genai.configure(api_key=secret)
model_vision = genai.GenerativeModel('gemini-pro-vision')
model_text = genai.GenerativeModel('gemini-pro')
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
def encode_image(image):
# Convert image to BytesIO object (in memory)
buffered = BytesIO()
image.save(buffered, format=image.format) # Use the original image format (e.g., PNG, JPEG)
img_bytes = buffered.getvalue()
# Encode image to base64
base64_image = base64.b64encode(img_bytes).decode('utf-8')
return base64_image
def vision(image):
# OpenAI API Key
api_key = "sk-proj-1j1aFDCU8KrWAeFMAGPPT3BlbkFJ6rDxGgu8C99E3Wh6siUs"
# Getting the base64 string
base64_image = encode_image(image)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
payload = {
"model": "gpt-4o-mini",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "extract all data from this image"
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
}
],
"max_tokens": 300
}
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
print(response.json()['choices'][0]['message']['content'])
@app.post("/get_ocr_data/")
async def get_data(input_file: UploadFile = File(...)):
try:
# Determine the file type by reading the first few bytes
file_content = await input_file.read()
file_type = input_file.content_type
text = ""
if file_type == "application/pdf":
# Read PDF file using PyPDF2
pdf_reader = PdfReader(io.BytesIO(file_content))
for page in pdf_reader.pages:
text += page.extract_text()
elif file_type in ["image/jpeg", "image/png", "image/jpg"]:
# Read Image file using PIL and pytesseract
image = Image.open(io.BytesIO(file_content))
return encode_image(image)
text = vision(image)
else:
raise HTTPException(status_code=400, detail="Unsupported file type")
# Call Gemini (or another model) to extract required data
prompt = f"""This is CV data: {text.strip()}
I want only:
firstname, lastname, contact number, total years of experience, LinkedIn link, experience, skills
in JSON format only"""
response = model_text.generate_content(prompt)
data = json.loads(response.text.replace("```json", "").replace("```", ""))
return {"data": data}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error processing file: {str(e)}")