Update main.py
Browse files
main.py
CHANGED
|
@@ -1,86 +1,135 @@
|
|
| 1 |
-
from fastapi import FastAPI, File, UploadFile
|
| 2 |
-
from fastapi.responses import FileResponse
|
| 3 |
-
import os
|
| 4 |
-
import io
|
| 5 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 6 |
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
import pandas as pd
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
app = FastAPI()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
app.add_middleware(
|
| 12 |
CORSMiddleware,
|
| 13 |
-
allow_origins=
|
| 14 |
allow_credentials=True,
|
| 15 |
-
allow_methods=["*"],
|
| 16 |
-
allow_headers=["*"],
|
| 17 |
)
|
| 18 |
-
# Parameters
|
| 19 |
-
API_KEY = "an3vib2nh4-3R48tMWfBZg"
|
| 20 |
-
WEBSITE_COLUMN = "Website"
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
"annual_revenue": org.get("annual_revenue", "unknown"),
|
| 34 |
-
"country": org.get("country", "unknown"),
|
| 35 |
-
"estimated_num_employees": org.get("estimated_num_employees", "unknown"),
|
| 36 |
-
"industry": org.get("industry", "unknown"),
|
| 37 |
-
"keywords": org.get("keywords", "unknown"),
|
| 38 |
-
"linkedin_uid": org.get("linkedin_uid", "unknown")
|
| 39 |
-
}
|
| 40 |
-
else:
|
| 41 |
-
print(f"No data for {domain}")
|
| 42 |
-
return {
|
| 43 |
-
"domain": domain,
|
| 44 |
-
"alexa_ranking": "unknown",
|
| 45 |
-
"annual_revenue": "unknown",
|
| 46 |
-
"country": "unknown",
|
| 47 |
-
"estimated_num_employees": "unknown",
|
| 48 |
-
"industry": "unknown",
|
| 49 |
-
"keywords": "unknown",
|
| 50 |
-
"linkedin_uid": "unknown"
|
| 51 |
-
}
|
| 52 |
-
|
| 53 |
-
@app.post("/get_data_file")
|
| 54 |
-
def main(file: UploadFile = File(...)):
|
| 55 |
-
LEAD_LIST_PATH = file.filename
|
| 56 |
-
print(file.filename)
|
| 57 |
-
with open(file.filename, "wb") as file_object:
|
| 58 |
-
file_object.write(file.file.read())
|
| 59 |
-
|
| 60 |
-
def get_domain(url):
|
| 61 |
-
if "//" in url:
|
| 62 |
-
start = url.index("//") + 2
|
| 63 |
-
else:
|
| 64 |
-
start = 0
|
| 65 |
-
result = url[start:].strip("/")
|
| 66 |
-
return result
|
| 67 |
|
| 68 |
-
|
| 69 |
-
data = pd.read_excel(LEAD_LIST_PATH)
|
| 70 |
-
websites = data[WEBSITE_COLUMN].drop_duplicates().apply(get_domain)
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import requests
|
| 2 |
+
from fastapi import FastAPI, Query
|
| 3 |
+
from fastapi.responses import FileResponse
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
from datetime import datetime, timedelta
|
| 6 |
import pandas as pd
|
| 7 |
+
from sklearn.linear_model import LinearRegression
|
| 8 |
+
from sklearn.preprocessing import StandardScaler
|
| 9 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 10 |
+
import uvicorn
|
| 11 |
+
from fastapi.responses import HTMLResponse
|
| 12 |
|
| 13 |
app = FastAPI()
|
| 14 |
+
|
| 15 |
+
# Configure CORS
|
| 16 |
+
origins = [
|
| 17 |
+
"*", # Allows all origins
|
| 18 |
+
]
|
| 19 |
+
|
| 20 |
app.add_middleware(
|
| 21 |
CORSMiddleware,
|
| 22 |
+
allow_origins=origins, # Allows all origins
|
| 23 |
allow_credentials=True,
|
| 24 |
+
allow_methods=["*"], # Allows all methods
|
| 25 |
+
allow_headers=["*"], # Allows all headers
|
| 26 |
)
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
# Constants for API access
|
| 29 |
+
API_KEY = 'U9ER11OA4VGEWV9K'
|
| 30 |
+
STOCK_SYMBOL = 'AAPL'
|
| 31 |
+
API_URL = f"https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol={STOCK_SYMBOL}&apikey={API_KEY}"
|
| 32 |
|
| 33 |
+
# Function to fetch stock data
|
| 34 |
+
def fetch_stock_data(symbol):
|
| 35 |
+
url = f"https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol={symbol}&apikey={API_KEY}"
|
| 36 |
+
response = requests.get(url)
|
| 37 |
+
data = response.json()
|
| 38 |
+
return data['Time Series (Daily)']
|
| 39 |
|
| 40 |
+
# Function to update stock data and plot
|
| 41 |
+
def fetch_and_update(symbol=STOCK_SYMBOL, graph_type="line"):
|
| 42 |
+
daily_data = fetch_stock_data(symbol)
|
| 43 |
|
| 44 |
+
dates = []
|
| 45 |
+
close_prices = []
|
| 46 |
+
for date, daily_info in sorted(daily_data.items()):
|
| 47 |
+
dates.append(datetime.strptime(date, '%Y-%m-%d'))
|
| 48 |
+
close_prices.append(float(daily_info['4. close']))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
+
plt.figure(figsize=(14, 7))
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
if graph_type == "line":
|
| 53 |
+
plt.plot(dates, close_prices, marker='o', linestyle='-')
|
| 54 |
+
elif graph_type == "bar":
|
| 55 |
+
plt.bar(dates, close_prices)
|
| 56 |
+
elif graph_type == "scatter":
|
| 57 |
+
plt.scatter(dates, close_prices)
|
| 58 |
+
elif graph_type == "buy_sell":
|
| 59 |
+
stock_data = pd.DataFrame({'Date': dates, 'Close': close_prices})
|
| 60 |
+
stock_data['Short_MA'] = stock_data['Close'].rolling(window=40).mean()
|
| 61 |
+
stock_data['Long_MA'] = stock_data['Close'].rolling(window=100).mean()
|
| 62 |
+
|
| 63 |
+
buy_signals = stock_data[(stock_data['Short_MA'] > stock_data['Long_MA']) & (stock_data['Short_MA'].shift(1) <= stock_data['Long_MA'].shift(1))].index
|
| 64 |
+
sell_signals = stock_data[(stock_data['Short_MA'] < stock_data['Long_MA']) & (stock_data['Short_MA'].shift(1) >= stock_data['Long_MA'].shift(1))].index
|
| 65 |
+
|
| 66 |
+
plt.plot(stock_data['Date'], stock_data['Close'], label='Closing Price', alpha=0.5)
|
| 67 |
+
plt.plot(stock_data['Date'], stock_data['Short_MA'], label='40-Day Moving Average', alpha=0.75)
|
| 68 |
+
plt.plot(stock_data['Date'], stock_data['Long_MA'], label='100-Day Moving Average', alpha=0.75)
|
| 69 |
+
plt.scatter(stock_data.loc[buy_signals]['Date'], stock_data.loc[buy_signals]['Close'], marker='^', color='g', label='Buy Signal', alpha=1)
|
| 70 |
+
plt.scatter(stock_data.loc[sell_signals]['Date'], stock_data.loc[sell_signals]['Close'], marker='v', color='r', label='Sell Signal', alpha=1)
|
| 71 |
+
|
| 72 |
+
plt.title(f'{symbol} Stock Prices Over Time')
|
| 73 |
+
plt.xlabel('Date')
|
| 74 |
+
plt.ylabel('Close Price ($)')
|
| 75 |
+
plt.gcf().autofmt_xdate()
|
| 76 |
+
plt.legend()
|
| 77 |
+
plt.savefig("stock.png") # Save the plot as a PNG file
|
| 78 |
+
plt.close()
|
| 79 |
+
return dates, close_prices
|
| 80 |
+
|
| 81 |
+
# Preprocess data for prediction
|
| 82 |
+
def preprocess_data(dates, close_prices):
|
| 83 |
+
df = pd.DataFrame({'Date': dates, 'Close': close_prices})
|
| 84 |
+
df['Date_ordinal'] = pd.to_datetime(df['Date']).apply(lambda date: date.toordinal())
|
| 85 |
|
| 86 |
+
# Handle missing values (if any)
|
| 87 |
+
df.fillna(method='ffill', inplace=True)
|
| 88 |
+
df.fillna(method='bfill', inplace=True)
|
| 89 |
+
|
| 90 |
+
# Feature scaling
|
| 91 |
+
scaler = StandardScaler()
|
| 92 |
+
df['Close_scaled'] = scaler.fit_transform(df[['Close']])
|
| 93 |
+
|
| 94 |
+
return df, scaler
|
| 95 |
+
|
| 96 |
+
# Machine Learning Model for Prediction
|
| 97 |
+
def predict_stock_prices(dates, close_prices, interval_days=7):
|
| 98 |
+
df, scaler = preprocess_data(dates, close_prices)
|
| 99 |
+
|
| 100 |
+
model = LinearRegression()
|
| 101 |
+
model.fit(df[['Date_ordinal']], df['Close_scaled'])
|
| 102 |
+
|
| 103 |
+
last_date = df['Date'].max()
|
| 104 |
+
future_dates = [last_date + timedelta(days=i) for i in range(1, interval_days+1)]
|
| 105 |
+
future_ordinal = [date.toordinal() for date in future_dates]
|
| 106 |
+
scaled_predictions = model.predict(pd.DataFrame(future_ordinal, columns=['Date_ordinal']))
|
| 107 |
+
|
| 108 |
+
predictions = scaler.inverse_transform(scaled_predictions.reshape(-1, 1)).flatten()
|
| 109 |
+
|
| 110 |
+
return future_dates, predictions
|
| 111 |
+
|
| 112 |
|
| 113 |
+
@app.get("/", response_class=HTMLResponse)
|
| 114 |
+
async def read_root():
|
| 115 |
+
html= open("index.html","r")
|
| 116 |
+
return HTMLResponse(content=html.read())
|
| 117 |
|
| 118 |
+
# FastAPI endpoint to serve the graph image
|
| 119 |
+
@app.get("/graph")
|
| 120 |
+
async def get_graph(symbol: str = STOCK_SYMBOL, graph_type: str = Query("line", enum=["line", "bar", "scatter", "buy_sell"])):
|
| 121 |
+
dates, close_prices = fetch_and_update(symbol, graph_type)
|
| 122 |
+
return FileResponse("stock.png")
|
| 123 |
+
|
| 124 |
+
# FastAPI endpoint to predict stock prices
|
| 125 |
+
@app.get("/predict")
|
| 126 |
+
async def predict(symbol: str = STOCK_SYMBOL, interval: int = 7):
|
| 127 |
+
dates, close_prices = fetch_and_update(symbol)
|
| 128 |
+
future_dates, predictions = predict_stock_prices(dates, close_prices, interval)
|
| 129 |
+
|
| 130 |
+
prediction_data = {str(date): float(pred) for date, pred in zip(future_dates, predictions)}
|
| 131 |
+
return prediction_data
|
| 132 |
|
| 133 |
+
# if __name__ == "__main__":
|
| 134 |
+
# # Run the FastAPI app using uvicorn with automatic reloading
|
| 135 |
+
# uvicorn.run(app, host="127.0.0.1", port=8000)
|