File size: 1,504 Bytes
13cb3ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92ac539
13cb3ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import logging
import torch
import time
from diffusers import StableDiffusionInpaintPipeline
from helpers import flush

LOGGING = logging.getLogger(__name__)
    
class SDPipeline:
    def __init__(self):
        self.pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "stabilityai/stable-diffusion-2-inpainting",
            torch_dtype=torch.float16,
            safety_checker=None,
        )

        self.pipe.enable_xformers_memory_efficient_attention()
        self.pipe = self.pipe.to("cuda")
        
        self.waiting_queue = []
        self.count = 0
    
    @property
    def queue_size(self):
        return len(self.waiting_queue)
    
    def __call__(self, **kwargs):
        self.count += 1
        number = self.count

        self.waiting_queue.append(number)
        
        # wait until the next number in the queue is the current number
        while self.waiting_queue[0] != number:
            print(f"Wait for your turn {number} in queue {self.waiting_queue}")
            time.sleep(0.5)
            pass

        # it's your turn, so remove the number from the queue
        # and call the function
        print("It's the turn of", self.count)
        results = self.pipe(**kwargs)
        self.waiting_queue.pop(0)
        flush()
        return results


def get_inpainting_pipeline():
    """Method to load the inpainting pipeline
    Returns:
        StableDiffusionInpaintPipeline: inpainting pipeline
    """
    pipe = SDPipeline()
    return pipe