# import gradio as gr # # def greet(name): # return "V5 Hello " + name + "!!" # # iface = gr.Interface( # fn=greet, # inputs="text", # outputs="text", # title="MB TEST 1", # ) # iface.launch(share=True) import gradio as gr from models import make_inpainting import io from PIL import Image import numpy as np # from transformers import pipeline # # pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog") def image_to_byte_array(image: Image) -> bytes: # BytesIO is a fake file stored in memory imgByteArr = io.BytesIO() # image.save expects a file as a argument, passing a bytes io ins image.save(imgByteArr, format='png') # image.format # Turn the BytesIO object back into a bytes object imgByteArr = imgByteArr.getvalue() return imgByteArr def predict(input_img1,input_img2): # image = Image.open(requests.get("https://applydesignblobs-chh5aahjdzh0cnew.z01.azurefd.net/spaceimages/org_sqr_7fee0869-3187-4363-b5fb-5233e943649d.png", stream=True).raw) # mask = Image.open(requests.get("https://applydesign.blob.core.windows.net/spaceimages/mask_e85b1585-8.png", stream=True).raw) result_image = make_inpainting(positive_prompt='test1', image=image_to_byte_array(input_img1), mask_image=np.array(input_img2), negative_prompt="xxx", ) # predictions = pipeline(input_img1) return input_img1 gradio_app = gr.Interface( predict, inputs=[gr.Image(label="img", sources=['upload', 'webcam'], type="pil"), gr.Image(label="mask", sources=['upload', 'webcam'], type="pil") ], outputs= gr.Image(label="resp"), title="rem fur 1", ) gradio_app.launch(share=True)