michaelapplydesign commited on
Commit
28471f6
·
1 Parent(s): 7d261da
Files changed (1) hide show
  1. app.py +4 -20
app.py CHANGED
@@ -1,23 +1,9 @@
1
  import gradio as gr
2
- from models import make_inpainting
3
  import io
4
  from PIL import Image
5
  import numpy as np
6
-
7
- from PIL import Image
8
- from typing import Union
9
- import random
10
- import numpy as np
11
- import os
12
- import time
13
-
14
  from models import make_image_controlnet, make_inpainting
15
- from segmentation import segment_image
16
- from config import HEIGHT, WIDTH, POS_PROMPT, NEG_PROMPT, COLOR_MAPPING, map_colors, map_colors_rgb
17
- from palette import COLOR_MAPPING_CATEGORY
18
  from preprocessing import preprocess_seg_mask, get_image, get_mask
19
- from explanation import make_inpainting_explanation, make_regeneration_explanation, make_segmentation_explanation
20
-
21
 
22
  def image_to_byte_array(image: Image) -> bytes:
23
  # BytesIO is a fake file stored in memory
@@ -29,21 +15,19 @@ def image_to_byte_array(image: Image) -> bytes:
29
  return imgByteArr
30
 
31
  def predict(input_img1,input_img2):
32
-
33
- # image = Image.open(requests.get("https://applydesignblobs-chh5aahjdzh0cnew.z01.azurefd.net/spaceimages/org_sqr_7fee0869-3187-4363-b5fb-5233e943649d.png", stream=True).raw)
34
- # mask = Image.open(requests.get("https://applydesign.blob.core.windows.net/spaceimages/mask_e85b1585-8.png", stream=True).raw)
35
 
36
  canvas_mask = np.array(input_img2)
37
  mask = get_mask(canvas_mask)
38
 
 
 
39
  result_image = make_inpainting(positive_prompt='test1',
40
- image=Image.fromarray(input_img1),
41
  mask_image=mask,
42
  negative_prompt="xxx",
43
  )
44
 
45
-
46
- # predictions = pipeline(input_img1)
47
  return result_image
48
 
49
  gradio_app = gr.Interface(
 
1
  import gradio as gr
 
2
  import io
3
  from PIL import Image
4
  import numpy as np
 
 
 
 
 
 
 
 
5
  from models import make_image_controlnet, make_inpainting
 
 
 
6
  from preprocessing import preprocess_seg_mask, get_image, get_mask
 
 
7
 
8
  def image_to_byte_array(image: Image) -> bytes:
9
  # BytesIO is a fake file stored in memory
 
15
  return imgByteArr
16
 
17
  def predict(input_img1,input_img2):
18
+ print("predict")
 
 
19
 
20
  canvas_mask = np.array(input_img2)
21
  mask = get_mask(canvas_mask)
22
 
23
+ print(input_img1, mask)
24
+
25
  result_image = make_inpainting(positive_prompt='test1',
26
+ image=input_img1,
27
  mask_image=mask,
28
  negative_prompt="xxx",
29
  )
30
 
 
 
31
  return result_image
32
 
33
  gradio_app = gr.Interface(