Anushree1 commited on
Commit
d632c9a
·
verified ·
1 Parent(s): 984a6cc

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -0
app.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
4
+
5
+ # Load Pretrained Model & Tokenizer (XLM-Roberta for multilingual text classification)
6
+ MODEL_NAME = "xlm-roberta-base"
7
+ model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels=5)
8
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
9
+
10
+ # Classification Function
11
+ def classify_text(text):
12
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
13
+ with torch.no_grad():
14
+ outputs = model(**inputs)
15
+ label = torch.argmax(outputs.logits, dim=1).item()
16
+ return f"Predicted Category: {label}"
17
+
18
+ # Gradio UI
19
+ demo = gr.Interface(fn=classify_text, inputs=gr.Textbox(lines=2, placeholder="Enter business document text..."),
20
+ outputs="text", title="Multilingual Business Document Classifier")
21
+
22
+ demo.launch()