Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,21 +2,44 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
|
5 |
-
# Load Pretrained Model & Tokenizer (
|
6 |
MODEL_NAME = "xlm-roberta-base"
|
7 |
-
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels=5)
|
8 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
# Classification Function
|
11 |
def classify_text(text):
|
12 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
|
|
13 |
with torch.no_grad():
|
14 |
outputs = model(**inputs)
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# Gradio UI
|
19 |
-
demo = gr.Interface(
|
20 |
-
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
demo.launch()
|
|
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
|
5 |
+
# Load Pretrained Model & Tokenizer (Ensure this is a fine-tuned model)
|
6 |
MODEL_NAME = "xlm-roberta-base"
|
7 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels=5) # Adjust num_labels as per training
|
8 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
9 |
|
10 |
+
# Define Label Mapping (Modify based on your dataset)
|
11 |
+
LABEL_MAPPING = {
|
12 |
+
0: "Contract",
|
13 |
+
1: "Invoice",
|
14 |
+
2: "Financial Report",
|
15 |
+
3: "Legal Notice",
|
16 |
+
4: "Marketing Material"
|
17 |
+
}
|
18 |
+
|
19 |
# Classification Function
|
20 |
def classify_text(text):
|
21 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
22 |
+
|
23 |
with torch.no_grad():
|
24 |
outputs = model(**inputs)
|
25 |
+
|
26 |
+
# Convert logits to probabilities
|
27 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
|
28 |
+
|
29 |
+
# Get predicted label index
|
30 |
+
label_idx = torch.argmax(probs, dim=1).item()
|
31 |
+
|
32 |
+
# Retrieve category name
|
33 |
+
category = LABEL_MAPPING.get(label_idx, "Unknown")
|
34 |
+
|
35 |
+
return f"Predicted Category: {category} (Confidence: {probs[0][label_idx]:.2f})"
|
36 |
|
37 |
# Gradio UI
|
38 |
+
demo = gr.Interface(
|
39 |
+
fn=classify_text,
|
40 |
+
inputs=gr.Textbox(lines=4, placeholder="Enter business document text..."),
|
41 |
+
outputs="text",
|
42 |
+
title="Multilingual Business Document Classifier"
|
43 |
+
)
|
44 |
|
45 |
+
demo.launch()
|