Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,44 @@
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import os
|
|
|
|
|
4 |
|
5 |
# Define the folder path where images will be saved
|
6 |
-
dataset_path = "/
|
7 |
-
|
8 |
-
# Ensure the directory exists
|
9 |
if not os.path.exists(dataset_path):
|
10 |
os.makedirs(dataset_path)
|
11 |
|
12 |
-
# Function to
|
13 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
person_folder = os.path.join(dataset_path, name)
|
15 |
-
os.makedirs(person_folder, exist_ok=True)
|
16 |
|
|
|
17 |
image_count = len(os.listdir(person_folder))
|
18 |
image_path = os.path.join(person_folder, f"{image_count + 1}.jpg")
|
19 |
-
cv2.imwrite(image_path, cv2.cvtColor(
|
20 |
|
21 |
-
return f"Image saved for {name} at {image_path}"
|
22 |
|
23 |
-
# Gradio interface
|
24 |
iface = gr.Interface(
|
25 |
-
fn=
|
26 |
-
inputs=["
|
27 |
-
outputs="text",
|
28 |
-
|
|
|
29 |
)
|
30 |
|
|
|
31 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import os
|
4 |
+
import numpy as np
|
5 |
+
from deepface import DeepFace
|
6 |
|
7 |
# Define the folder path where images will be saved
|
8 |
+
dataset_path = "/content/dataset" # For Colab or your local environment
|
|
|
|
|
9 |
if not os.path.exists(dataset_path):
|
10 |
os.makedirs(dataset_path)
|
11 |
|
12 |
+
# Function to predict emotion and save the image
|
13 |
+
def capture_and_recognize(image, name):
|
14 |
+
# Convert Gradio image (PIL format) to OpenCV image
|
15 |
+
img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
16 |
+
|
17 |
+
# Analyze the emotion using DeepFace
|
18 |
+
result = DeepFace.analyze(img, actions=['emotion'])
|
19 |
+
|
20 |
+
# Get the dominant emotion
|
21 |
+
dominant_emotion = result[0]['dominant_emotion']
|
22 |
+
|
23 |
+
# Create a folder for each person if not exists
|
24 |
person_folder = os.path.join(dataset_path, name)
|
25 |
+
os.makedirs(person_folder, exist_ok=True)
|
26 |
|
27 |
+
# Save the image in the person's folder
|
28 |
image_count = len(os.listdir(person_folder))
|
29 |
image_path = os.path.join(person_folder, f"{image_count + 1}.jpg")
|
30 |
+
cv2.imwrite(image_path, cv2.cvtColor(img, cv2.COLOR_RGB2BGR)) # Save in BGR format for OpenCV
|
31 |
|
32 |
+
return f"Image saved for {name} with emotion: {dominant_emotion} at {image_path}"
|
33 |
|
34 |
+
# Define the Gradio interface
|
35 |
iface = gr.Interface(
|
36 |
+
fn=capture_and_recognize,
|
37 |
+
inputs=[gr.Image(type="pil", source="webcam"), gr.Textbox()], # Webcam input and Name input
|
38 |
+
outputs="text", # Text output for saved image path and emotion
|
39 |
+
title="Attendance Image Capture with Emotion Recognition",
|
40 |
+
description="Capture an image via webcam, enter your name, and the image will be saved with emotion recognition."
|
41 |
)
|
42 |
|
43 |
+
# Launch the Gradio app
|
44 |
iface.launch()
|