Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,75 +1,24 @@
|
|
|
|
|
|
|
|
1 |
import cv2
|
2 |
import mediapipe as mp
|
3 |
-
import numpy as np
|
4 |
-
import tensorflow as tf
|
5 |
-
import gradio as gr
|
6 |
|
7 |
-
# Load
|
8 |
model = tf.keras.models.load_model("sign_language_model.h5")
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
min_detection_confidence=0.7,
|
26 |
-
min_tracking_confidence=0.7) as hands:
|
27 |
-
result = hands.process(rgb_image)
|
28 |
-
|
29 |
-
if result.multi_hand_landmarks:
|
30 |
-
for hand_landmarks in result.multi_hand_landmarks:
|
31 |
-
# Draw landmarks on the image
|
32 |
-
mp_drawing.draw_landmarks(image, hand_landmarks, mp_hands.HAND_CONNECTIONS)
|
33 |
-
|
34 |
-
# Extract hand landmark coordinates as features
|
35 |
-
landmarks = []
|
36 |
-
for lm in hand_landmarks.landmark:
|
37 |
-
landmarks.extend([lm.x, lm.y, lm.z])
|
38 |
-
|
39 |
-
# Reshape data for prediction
|
40 |
-
features = np.array(landmarks).reshape(1, -1)
|
41 |
-
|
42 |
-
# Predict gesture
|
43 |
-
prediction = model.predict(features)
|
44 |
-
gesture = labels[np.argmax(prediction)]
|
45 |
-
|
46 |
-
# Display the predicted gesture on the image
|
47 |
-
h, w, _ = image.shape
|
48 |
-
cv2.putText(image, gesture, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
49 |
-
return gesture, image
|
50 |
-
|
51 |
-
return "No hand detected", image
|
52 |
-
|
53 |
-
# Gradio interface wrapper
|
54 |
-
def gradio_wrapper(image):
|
55 |
-
# Convert Gradio input to OpenCV format
|
56 |
-
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
57 |
-
gesture, annotated_image = recognize_sign(image)
|
58 |
-
# Convert the annotated image back to RGB for display
|
59 |
-
annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
|
60 |
-
return gesture, annotated_image
|
61 |
-
|
62 |
-
# Create Gradio Interface
|
63 |
-
interface = gr.Interface(
|
64 |
-
fn=gradio_wrapper,
|
65 |
-
inputs=gr.inputs.Image(source="webcam", tool=None),
|
66 |
-
outputs=[gr.outputs.Textbox(label="Predicted Gesture"),
|
67 |
-
gr.outputs.Image(label="Annotated Image")],
|
68 |
-
live=True,
|
69 |
-
title="Sign Language Recognition",
|
70 |
-
description="Predicts sign language gestures using TensorFlow and MediaPipe."
|
71 |
-
)
|
72 |
-
|
73 |
-
# Launch the Gradio app
|
74 |
-
if __name__ == "__main__":
|
75 |
-
interface.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
import cv2
|
5 |
import mediapipe as mp
|
|
|
|
|
|
|
6 |
|
7 |
+
# Load your model (Make sure the model is uploaded to the space or use a path to the model file)
|
8 |
model = tf.keras.models.load_model("sign_language_model.h5")
|
9 |
|
10 |
+
# Define your inference function
|
11 |
+
def predict(image):
|
12 |
+
# Preprocess the image here
|
13 |
+
# For example, resizing or normalizing
|
14 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
15 |
+
image = cv2.resize(image, (224, 224)) # Adjust based on your model input size
|
16 |
+
image = np.expand_dims(image, axis=0) # Add batch dimension
|
17 |
+
prediction = model.predict(image)
|
18 |
+
# Post-process the output if necessary (e.g., applying a threshold or mapping to class labels)
|
19 |
+
return prediction
|
20 |
+
|
21 |
+
# Set up the Gradio interface
|
22 |
+
iface = gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(224, 224)), outputs="text")
|
23 |
+
|
24 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|