Delete app.py
Browse filesimport torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
import random
import re
from typing import Dict, List
import warnings
import os
warnings.filterwarnings('ignore')
# Set environment variables for better performance
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
class AIStoryteller:
"""AI Storyteller optimized for Hugging Face Spaces"""
def __init__(self):
self.model = None
self.tokenizer = None
self.model_loaded = False
self.load_model()
def load_model(self):
"""Load the AI model"""
try:
print("π₯ Loading DistilGPT-2 model...")
model_name = "distilgpt2"
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.model_loaded = True
print("β
Model loaded successfully!")
return True
except Exception as e:
print(f"β Model loading failed: {e}")
return False
def generate_story(self, prompt, max_length=100):
"""Generate a story from a prompt"""
if not self.model_loaded:
return "β Model not loaded. Please try again."
try:
inputs = self.tokenizer.encode(prompt, return_tensors='pt', max_length=256, truncation=True)
with torch.no_grad():
outputs = self.model.generate(
inputs,
max_length=min(inputs.shape[1] + max_length, 256),
temperature=0.8,
do_sample=True,
top_p=0.9,
top_k=50,
pad_token_id=self.tokenizer.eos_token_id,
no_repeat_ngram_size=2,
repetition_penalty=1.1
)
full_story = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
if full_story.startswith(prompt):
generated_part = full_story[len(prompt):].strip()
return f"{prompt} {generated_part}"
else:
return full_story
except Exception as e:
return f"β Error generating story: {str(e)}"
# Initialize the storyteller
print("π Initializing AI Storyteller...")
storyteller = AIStoryteller()
def generate_story_interface(prompt, genre, story_length):
"""Main interface function"""
if not prompt or not prompt.strip():
return "β Please enter a story prompt!"
genre_starters = {
"Fantasy": "In a realm of magic and wonder,",
"Sci-Fi": "In the distant future among the stars,",
"Mystery": "On a foggy night filled with secrets,",
"Horror": "In the darkness where nightmares dwell,",
"Romance": "When two hearts found each other,",
"Adventure": "On a daring quest for glory,",
"Comedy": "In a world of laughter and mishaps,",
"Drama": "In a tale of human emotion,"
}
if genre in genre_starters:
full_prompt = f"{genre_starters[genre]} {prompt.strip()}"
else:
full_prompt = prompt.strip()
return storyteller.generate_story(full_prompt, max_length=int(story_length))
# Create Gradio interface
interface = gr.Interface(
fn=generate_story_interface,
inputs=[
gr.Textbox(
label="π Story Prompt",
placeholder="Enter your story idea (e.g., 'a detective finds a mysterious letter')",
lines=3
),
gr.Dropdown(
choices=["Fantasy", "Sci-Fi", "Mystery", "Horror", "Romance", "Adventure", "Comedy", "Drama"],
label="π Genre",
value="Fantasy"
),
gr.Slider(
minimum=30,
maximum=120,
value=80,
label="π Story Length"
)
],
outputs=gr.Textbox(
label="π Generated Story",
lines=8
),
title="π AI Storyteller",
description="""
π **Create Amazing Stories with AI!** π
Enter a creative prompt, choose your favorite genre, and let AI craft a unique story for you!
Perfect for writers, students, and anyone who loves creative storytelling.
""",
examples=[
["a young wizard discovers a hidden library", "Fantasy", 100],
["a detective receives a cryptic phone call", "Mystery", 80],
["robots develop feelings", "Sci-Fi", 90],
["two strangers meet in a coffee shop", "Romance", 70],
["an explorer finds a secret cave", "Adventure", 85]
],
theme=gr.themes.Soft()
)
# Launch the app
if __name__ == "__main__":
interface.launch()
@@ -1,64 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
-
|
4 |
-
"""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
-
|
9 |
-
|
10 |
-
def respond(
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
-
|
62 |
-
|
63 |
-
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|