File size: 12,970 Bytes
8348919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import torch
from PIL import Image
from typing import List, Dict, Optional
from transformers import CLIPProcessor, CLIPModel
from qdrant_singleton import QdrantClientSingleton
from folder_manager import FolderManager
from image_database import ImageDatabase
import httpx
import io

class ImageSearch:
    def __init__(self):
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        print(f"Using device: {self.device}")
        
        # Load model and processor with proper device handling
        self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
        
        # Load model directly to the target device to avoid meta tensor issues
        if self.device == "cuda":
            self.model = CLIPModel.from_pretrained(
                "openai/clip-vit-base-patch16",
                torch_dtype=torch.float16,
                device_map="auto"
            )
        else:
            # For CPU, use device_map to avoid meta tensor issues
            self.model = CLIPModel.from_pretrained(
                "openai/clip-vit-base-patch16",
                device_map="cpu"
            )
        
        # Initialize Qdrant client, folder manager and image database
        self.qdrant = QdrantClientSingleton.get_instance()
        self.folder_manager = FolderManager()
        self.image_db = ImageDatabase()
    
    def calculate_similarity_percentage(self, score: float) -> float:
        """Convert cosine similarity score to percentage"""
        # Qdrant returns cosine similarity scores between -1 and 1
        # We want to convert this to a percentage between 0 and 100
        # First normalize to 0-1 range, then convert to percentage
        normalized = (score + 1) / 2
        return normalized * 100

    def filter_results(self, search_results: list, threshold: float = 60) -> List[Dict]:
        """Filter and format search results"""
        results = []
        for scored_point in search_results:
            # Convert cosine similarity to percentage
            similarity = self.calculate_similarity_percentage(scored_point.score)
            
            # Only include results above threshold (60% similarity)
            if similarity >= threshold:
                # Get image data from SQLite database
                image_id = scored_point.payload.get("image_id")
                if image_id:
                    image_data = self.image_db.get_image(image_id)
                    if image_data:
                        results.append({
                            "id": image_id,
                            "path": scored_point.payload["path"],
                            "filename": image_data["filename"],
                            "root_folder": scored_point.payload["root_folder"],
                            "similarity": round(similarity, 1),
                            "file_size": image_data["file_size"],
                            "width": image_data["width"],
                            "height": image_data["height"]
                        })
        
        return results
    
    async def search_by_text(self, query: str, folder_path: Optional[str] = None, k: int = 10) -> List[Dict]:
        """Search images by text query"""
        try:
            print(f"\nSearching for text: '{query}'")
            
            # Get collections to search
            collections_to_search = []
            if folder_path:
                # Search in specific folder's collection
                collection_name = self.folder_manager.get_collection_for_path(folder_path)
                if collection_name:
                    collections_to_search.append(collection_name)
                    print(f"Searching in specific folder collection: {collection_name}")
            else:
                # Search in all collections
                folders = self.folder_manager.get_all_folders()
                print(f"Found {len(folders)} folders")
                for folder in folders:
                    print(f"Folder: {folder['path']}, Valid: {folder['is_valid']}, Collection: {folder.get('collection_name', 'None')}")
                # Include all collections regardless of folder validity since images are in SQLite
                collections_to_search.extend(folder["collection_name"] for folder in folders if folder.get("collection_name"))
            
            print(f"Collections to search: {collections_to_search}")
            
            if not collections_to_search:
                print("No collections available to search")
                return []
            
            # Generate text embedding
            inputs = self.processor(text=[query], return_tensors="pt", padding=True).to(self.device)
            with torch.no_grad():
                text_features = self.model.get_text_features(**inputs)
                text_features = text_features / text_features.norm(dim=-1, keepdim=True)
            text_embedding = text_features.cpu().numpy().flatten()
            
            # Search in all relevant collections
            all_results = []
            for collection_name in collections_to_search:
                try:
                    # Get more results from each collection when searching multiple collections
                    collection_limit = k * 3 if len(collections_to_search) > 1 else k
                    
                    search_result = self.qdrant.search(
                        collection_name=collection_name,
                        query_vector=text_embedding.tolist(),
                        limit=collection_limit,  # Get more results from each collection
                        offset=0,  # Explicitly set offset
                        score_threshold=0.2  # Corresponds to 60% similarity after normalization
                    )
                    
                    # Filter and format results
                    results = self.filter_results(search_result) # Threshold is now default 60 in filter_results
                    all_results.extend(results)
                    print(f"Found {len(results)} matches in collection {collection_name}")
                except Exception as e:
                    print(f"Error searching collection {collection_name}: {e}")
                    continue
            
            # Sort all results by similarity
            all_results.sort(key=lambda x: x["similarity"], reverse=True)
            
            # Take top k results
            final_results = all_results[:k]
            print(f"Found {len(final_results)} total relevant matches across {len(collections_to_search)} collections")
            
            return final_results
            
        except Exception as e:
            print(f"Error in text search: {e}")
            import traceback
            traceback.print_exc()
            return []
    
    async def search_by_image(self, image: Image.Image, folder_path: Optional[str] = None, k: int = 10) -> List[Dict]:
        """Search images by similarity to uploaded image"""
        try:
            print(f"\nSearching by image...")
            
            # Get collections to search
            collections_to_search = []
            if folder_path:
                # Search in specific folder's collection
                collection_name = self.folder_manager.get_collection_for_path(folder_path)
                if collection_name:
                    collections_to_search.append(collection_name)
                    print(f"Searching in specific folder collection: {collection_name}")
            else:
                # Search in all collections
                folders = self.folder_manager.get_all_folders()
                print(f"Found {len(folders)} folders")
                for folder in folders:
                    print(f"Folder: {folder['path']}, Valid: {folder['is_valid']}, Collection: {folder.get('collection_name', 'None')}")
                # Include all collections regardless of folder validity since images are in SQLite
                collections_to_search.extend(folder["collection_name"] for folder in folders if folder.get("collection_name"))
            
            print(f"Collections to search: {collections_to_search}")
            
            if not collections_to_search:
                print("No collections available to search")
                return []
            
            # Generate image embedding
            inputs = self.processor(images=image, return_tensors="pt").to(self.device)
            with torch.no_grad():
                image_features = self.model.get_image_features(**inputs)
                image_features = image_features / image_features.norm(dim=-1, keepdim=True)
            image_embedding = image_features.cpu().numpy().flatten()
            
            # Search in all relevant collections
            all_results = []
            for collection_name in collections_to_search:
                try:
                    # Get more results from each collection when searching multiple collections
                    collection_limit = k * 3 if len(collections_to_search) > 1 else k
                    
                    search_result = self.qdrant.search(
                        collection_name=collection_name,
                        query_vector=image_embedding.tolist(),
                        limit=collection_limit,  # Get more results from each collection
                        offset=0,  # Explicitly set offset
                        score_threshold=0.2  # Corresponds to 60% similarity after normalization
                    )
                    
                    # Filter and format results
                    results = self.filter_results(search_result) # Threshold is now default 60 in filter_results
                    all_results.extend(results)
                    print(f"Found {len(results)} matches in collection {collection_name}")
                except Exception as e:
                    print(f"Error searching collection {collection_name}: {e}")
                    continue
            
            # Sort all results by similarity
            all_results.sort(key=lambda x: x["similarity"], reverse=True)
            
            # Take top k results
            final_results = all_results[:k]
            print(f"Found {len(final_results)} total relevant matches across {len(collections_to_search)} collections")
            
            return final_results
            
        except Exception as e:
            print(f"Error in image search: {e}")
            import traceback
            traceback.print_exc()
            return []
    
    async def download_image_from_url(self, url: str) -> Optional[Image.Image]:
        """Download and return an image from a URL"""
        try:
            print(f"Downloading image from URL: {url}")
            
            # Use httpx for async HTTP requests
            async with httpx.AsyncClient(timeout=30.0) as client:
                response = await client.get(url)
                response.raise_for_status()
                
                # Check if the response is an image
                content_type = response.headers.get('content-type', '')
                if not content_type.startswith('image/'):
                    raise ValueError(f"URL does not point to an image. Content-Type: {content_type}")
                
                # Load image from response content
                image_bytes = io.BytesIO(response.content)
                image = Image.open(image_bytes)
                
                # Convert to RGB if necessary (for consistency with CLIP)
                if image.mode != 'RGB':
                    image = image.convert('RGB')
                
                print(f"Successfully downloaded image: {image.size}")
                return image
                
        except httpx.TimeoutException:
            print(f"Timeout while downloading image from URL: {url}")
            return None
        except httpx.HTTPStatusError as e:
            print(f"HTTP error {e.response.status_code} while downloading image from URL: {url}")
            return None
        except Exception as e:
            print(f"Error downloading image from URL {url}: {e}")
            return None
    
    async def search_by_url(self, url: str, folder_path: Optional[str] = None, k: int = 10) -> List[Dict]:
        """Search images by downloading and comparing an image from a URL"""
        try:
            print(f"\nSearching by image URL: {url}")
            
            # Download the image from URL
            image = await self.download_image_from_url(url)
            if image is None:
                return []
            
            # Use the existing search_by_image method
            return await self.search_by_image(image, folder_path, k)
            
        except Exception as e:
            print(f"Error in URL search: {e}")
            import traceback
            traceback.print_exc()
            return []