File size: 10,443 Bytes
24615d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import torch
import torch.nn as nn
import numpy as np
import argparse
import os

from torch.optim import Adam, lr_scheduler
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler

from batch_image_transforms import batch_transform_train, batch_transform_val
from i2v import i2v_transform, EMBED_DIM, load_weight
from data import DatasetFolder, get_target_transform
from model import ScoringModel
from metric import binary_accuracy, precision, recall
from torch.utils.tensorboard import SummaryWriter

device = 'cuda' if torch.cuda.is_available() else 'cpu'

CWD = os.path.dirname(__file__)
TRAINING_P = 0.8
CHECKPOINTS_DIRECTORY=os.path.join(CWD, '..', 'checkpoints')
WEIGHT_i2v = os.path.join(CWD, '..', 'weight', 'heads24_attn_epoch30_loss0.22810565.pt')
i2v = load_weight(WEIGHT_i2v)
i2v.to(device)
i2v_transform.to(device)

def save_checkpoint(dict_to_save: dict, path: str):
    directory = os.path.dirname(path)
    if not os.path.exists(directory): 
        os.makedirs(directory)
    torch.save(dict_to_save, path)

def write_tb_logs(stored_value, epoch, folder:str= "Loss/train"):
    if writer is not None:
        writer.add_scalar(folder, stored_value, epoch)
        writer.flush()


def train(epoch):
    scoringModel.train()
    total_n, total_loss, total_acc = 0, 0.0, 0.0
    total_precision, total_recall = 0.0, 0.0
    for index, (x,y_true) in enumerate(train_loader):
        x = x.to(device)                        # (batch_size, frames_per_clip, 3, 224, 224)
        y_true = y_true.to(device).float()
        batch_size = x.size(0)
        x = x.view(-1, 3, 224, 224)             # (batch_size * frames_per_clip, 3, 224 ,224)
        
        with torch.no_grad():
            x, _ = i2v(i2v_transform(x))        # (batch_size * frames_per_clip, 512)
        x = x.view(batch_size, -1, EMBED_DIM)   # (batch_size, frames_per_clip, 512)

        if args.frame_diff:
            x[:, 1:, :] = x[:, 1:, :] - x[:, :-1, :]
        
        x = x.view(batch_size, -1)
        y_pred = scoringModel(x).view(-1)

        acc = binary_accuracy(y_pred, y_true)
        pr = precision(y_pred, y_true)
        rc = recall(y_pred, y_true)
        loss = loss_fn(y_pred, y_true)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if index % 10 == 0:
            print('Loss[Epoch:{}, Iteration:{}] = {:.8f}'.format(epoch, index, loss.item()))
        
        total_acc += acc * batch_size
        total_precision += pr
        total_recall += rc
        total_loss += loss.item() * batch_size
        total_n += batch_size
    
    avg_loss = total_loss / total_n
    avg_acc = total_acc / total_n
    avg_precision = total_precision / len(train_loader)
    avg_recall = total_recall / len(train_loader)
    
    print('Finished training for epoch {} with average loss/acc: {}/{}'.format(epoch, avg_loss, avg_acc))
    write_tb_logs(avg_loss, epoch, "Loss/train")
    write_tb_logs(avg_acc, epoch, "Accuracy/train")
    write_tb_logs(avg_precision, epoch, "Precision/train")
    write_tb_logs(avg_recall, epoch, "Recall/train")
    return avg_loss

def validate(epoch):
    scoringModel.eval()
    if epoch:
        print('Calculating validation loss for epoch', epoch)
    else:
        print('Calculating validation loss')
    total_n, total_loss, total_acc = 0, 0.0, 0.0
    total_precision, total_recall = 0.0, 0.0
    for x, y_true in val_loader:
        x = x.to(device)                            # (batch_size, frames_per_clip, 3, 224, 224)
        y_true = y_true.to(device).float()
        batch_size = x.size(0)
        x = x.view(-1, 3, 224, 224)                 # (batch_size * frames_per_clip, 3, 224 ,224)
        
        with torch.no_grad():
            x, _ = i2v(i2v_transform(x))            # (batch_size * frames_per_clip, 512)
            x = x.view(batch_size, -1, EMBED_DIM)   # (batch_size, frames_per_clip, 512)

            if args.frame_diff:
                x[:, 1:, :] = x[:, 1:, :] - x[:, :-1, :]
            
            x = x.view(batch_size, -1)
            y_pred = scoringModel(x).view(-1)

        loss = loss_fn(y_pred, y_true)
        acc = binary_accuracy(y_pred, y_true)
        pr = precision(y_pred, y_true)
        rc = recall(y_pred, y_true)

        total_acc += acc * batch_size
        total_precision += pr
        total_recall += rc
        total_loss += loss.item() * batch_size
        total_n += batch_size

    avg_loss = total_loss / total_n
    avg_acc = total_acc / total_n
    avg_precision = total_precision / len(val_loader)
    avg_recall = total_recall / len(val_loader)

    print('Finished calculating validation loss/acc: {}/{}'.format(avg_loss, avg_acc))
    write_tb_logs(avg_loss, epoch, "Loss/val")
    write_tb_logs(avg_acc, epoch, "Accuracy/val")
    write_tb_logs(avg_precision, epoch, "Precision/val")
    write_tb_logs(avg_recall, epoch, "Recall/val")
    return avg_loss

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    ### Training related arguments  ###
    parser.add_argument('--batch_size', type=int, default=1)
    parser.add_argument('--n_epochs', type=int, default=1)
    parser.add_argument('--lr', type=float, default=1e-4)
    parser.add_argument('--validate', action='store_true')
    parser.add_argument('--pos_weight', action='store_true')
    parser.add_argument('--checkpoint', type=str, default=None)

    ### Data related arguments  ###
    parser.add_argument('--frames_per_clip', type=int, default=3)
    parser.add_argument('--dataset_root_dir', type=str, default=None)
    parser.add_argument('--positive_labels', type=str, default=None, required=True)
    parser.add_argument('--excluded_folders', type=str, default='')
    parser.add_argument('--balanced_dataset', action='store_true')

    ### Logging related arguments ### 
    parser.add_argument('--exp_name', type=str, default="")
    parser.add_argument('--use_tb', action='store_true')

    ### Scheduler related arguments ###
    parser.add_argument('--scheduler_gamma', type=float, default=0.1)
    parser.add_argument('--scheduler_step_size', type=int, default=1)
    parser.add_argument('--scheduler_step_till_epoch', type=int, default=10)

    ### Model related arguments ###
    parser.add_argument('--model_num_hidden_layers', type=int, default=1)
    parser.add_argument('--model_hidden_dim', type=int, default=10)


    ### Input related arguments ###
    # Convert the input `x = [frame_embedding1, frame_embedding2, ..., frame_embedding{n}]` to
    # [frame_embedding1, frame_embedding2-frame_embedding1, ..., frame_embedding_{n}-frame_embedding_{n-1}]
    parser.add_argument('--frame_diff', action='store_true')

    args = parser.parse_args()
    print('Arguments:', args)
    # Annotate log file
    # to activate tensorboard: python3 -m tensorboard.main --logdir=logs
    writer = SummaryWriter(log_dir= f'../logs/{args.exp_name}',comment=f'_{args.exp_name}') if args.use_tb else None

    # it is assumed that positive labels and excluded folders are passed as a string of labels separated by space
    positive_labels = args.positive_labels.split(' ')
    excluded_folders = args.excluded_folders.split(' ')

    ds = DatasetFolder(root=args.dataset_root_dir, frames_per_clip=args.frames_per_clip, transform_train=batch_transform_train, transform_val=batch_transform_val, excluded_folders=excluded_folders, balanced_dataset=args.balanced_dataset)
    ds.target_transform = get_target_transform(ds.class_to_idx, *positive_labels)
    print(f'== DatasetFolder class: {ds.classes}')
    print(f'== Class_to_idx: {ds.class_to_idx}')
    print(f'== Number of samples in each class: {ds.class_n_samples}')
    if args.pos_weight:
        print(f'== Positive weight: {ds.pos_weight} \n')

    loss_fn = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([ds.pos_weight]).to(device)) if args.pos_weight else nn.BCEWithLogitsLoss()

    ### START: Create training and validation sets ###
    indices = list(range(len(ds)))
    np.random.shuffle(indices)
    split_train = int(np.floor(TRAINING_P * len(indices)))
    train_indices, val_indices = indices[:split_train], indices[split_train:]
    ds.val_indices = val_indices
    ds.set_target_to_indices_dict(ds.target_transform, ds.samples)
    train_sampler = SubsetRandomSampler(train_indices)
    val_sampler = SubsetRandomSampler(val_indices)

    kwargs = {'pin_memory': True, 'num_workers': 4} if device == 'cuda' else {}
    train_loader = DataLoader(ds, sampler=train_sampler, batch_size=args.batch_size, **kwargs)
    val_loader = DataLoader(ds, sampler=val_sampler, batch_size=args.batch_size, **kwargs)
    ### END: Create training and validation sets ###

    scoringModel = ScoringModel(frames_per_clip=args.frames_per_clip, input_dim=EMBED_DIM, hidden_dim=args.model_hidden_dim, num_hidden_layers=args.model_num_hidden_layers)
    optimizer = Adam([{'params': scoringModel.parameters()}], lr=args.lr)
    scheduler = lr_scheduler.StepLR(optimizer, step_size=args.scheduler_step_size, gamma=args.scheduler_gamma)

    if args.checkpoint:
        print('Loading checkpoint ', args.checkpoint)
        assert os.path.exists(args.checkpoint), 'File not found: {}'.format(args.checkpoint)
        ckpt_dict = torch.load(args.checkpoint, map_location='cpu')
        scoringModel = ckpt_dict['model']
        optimizer.load_state_dict(ckpt_dict['optimizer_state_dict'])
        scheduler.load_state_dict(ckpt_dict['scheduler_state_dict'])

    scoringModel.to(device)

    if args.validate:
        scoringModel.eval()
        validate(None)
    else:
        train_losses, val_losses = [], []
        for epoch in range(args.n_epochs):
            scoringModel.train()
            loss = train(epoch)
            train_losses.append(loss)
            loss = validate(epoch)
            val_losses.append(loss)
            if epoch < args.scheduler_step_till_epoch:
                scheduler.step()

            ckpt_file = os.path.join(CHECKPOINTS_DIRECTORY, f'ckpt_epoch_{epoch}_loss_{train_losses[-1]}.ckpt')
            ckpt = {'model': scoringModel, 'optimizer_state_dict': optimizer.state_dict(), 'scheduler_state_dict': scheduler.state_dict(), 'args': vars(args), 'epoch': epoch, 'train_losses': train_losses, 'val_losses': val_losses}
            save_checkpoint(ckpt, ckpt_file)

        print('=== Training over ===')
        print('Train losses:', train_losses)
        print('Val losses:', val_losses)