Spaces:
Runtime error
Runtime error
File size: 10,443 Bytes
24615d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import torch
import torch.nn as nn
import numpy as np
import argparse
import os
from torch.optim import Adam, lr_scheduler
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
from batch_image_transforms import batch_transform_train, batch_transform_val
from i2v import i2v_transform, EMBED_DIM, load_weight
from data import DatasetFolder, get_target_transform
from model import ScoringModel
from metric import binary_accuracy, precision, recall
from torch.utils.tensorboard import SummaryWriter
device = 'cuda' if torch.cuda.is_available() else 'cpu'
CWD = os.path.dirname(__file__)
TRAINING_P = 0.8
CHECKPOINTS_DIRECTORY=os.path.join(CWD, '..', 'checkpoints')
WEIGHT_i2v = os.path.join(CWD, '..', 'weight', 'heads24_attn_epoch30_loss0.22810565.pt')
i2v = load_weight(WEIGHT_i2v)
i2v.to(device)
i2v_transform.to(device)
def save_checkpoint(dict_to_save: dict, path: str):
directory = os.path.dirname(path)
if not os.path.exists(directory):
os.makedirs(directory)
torch.save(dict_to_save, path)
def write_tb_logs(stored_value, epoch, folder:str= "Loss/train"):
if writer is not None:
writer.add_scalar(folder, stored_value, epoch)
writer.flush()
def train(epoch):
scoringModel.train()
total_n, total_loss, total_acc = 0, 0.0, 0.0
total_precision, total_recall = 0.0, 0.0
for index, (x,y_true) in enumerate(train_loader):
x = x.to(device) # (batch_size, frames_per_clip, 3, 224, 224)
y_true = y_true.to(device).float()
batch_size = x.size(0)
x = x.view(-1, 3, 224, 224) # (batch_size * frames_per_clip, 3, 224 ,224)
with torch.no_grad():
x, _ = i2v(i2v_transform(x)) # (batch_size * frames_per_clip, 512)
x = x.view(batch_size, -1, EMBED_DIM) # (batch_size, frames_per_clip, 512)
if args.frame_diff:
x[:, 1:, :] = x[:, 1:, :] - x[:, :-1, :]
x = x.view(batch_size, -1)
y_pred = scoringModel(x).view(-1)
acc = binary_accuracy(y_pred, y_true)
pr = precision(y_pred, y_true)
rc = recall(y_pred, y_true)
loss = loss_fn(y_pred, y_true)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if index % 10 == 0:
print('Loss[Epoch:{}, Iteration:{}] = {:.8f}'.format(epoch, index, loss.item()))
total_acc += acc * batch_size
total_precision += pr
total_recall += rc
total_loss += loss.item() * batch_size
total_n += batch_size
avg_loss = total_loss / total_n
avg_acc = total_acc / total_n
avg_precision = total_precision / len(train_loader)
avg_recall = total_recall / len(train_loader)
print('Finished training for epoch {} with average loss/acc: {}/{}'.format(epoch, avg_loss, avg_acc))
write_tb_logs(avg_loss, epoch, "Loss/train")
write_tb_logs(avg_acc, epoch, "Accuracy/train")
write_tb_logs(avg_precision, epoch, "Precision/train")
write_tb_logs(avg_recall, epoch, "Recall/train")
return avg_loss
def validate(epoch):
scoringModel.eval()
if epoch:
print('Calculating validation loss for epoch', epoch)
else:
print('Calculating validation loss')
total_n, total_loss, total_acc = 0, 0.0, 0.0
total_precision, total_recall = 0.0, 0.0
for x, y_true in val_loader:
x = x.to(device) # (batch_size, frames_per_clip, 3, 224, 224)
y_true = y_true.to(device).float()
batch_size = x.size(0)
x = x.view(-1, 3, 224, 224) # (batch_size * frames_per_clip, 3, 224 ,224)
with torch.no_grad():
x, _ = i2v(i2v_transform(x)) # (batch_size * frames_per_clip, 512)
x = x.view(batch_size, -1, EMBED_DIM) # (batch_size, frames_per_clip, 512)
if args.frame_diff:
x[:, 1:, :] = x[:, 1:, :] - x[:, :-1, :]
x = x.view(batch_size, -1)
y_pred = scoringModel(x).view(-1)
loss = loss_fn(y_pred, y_true)
acc = binary_accuracy(y_pred, y_true)
pr = precision(y_pred, y_true)
rc = recall(y_pred, y_true)
total_acc += acc * batch_size
total_precision += pr
total_recall += rc
total_loss += loss.item() * batch_size
total_n += batch_size
avg_loss = total_loss / total_n
avg_acc = total_acc / total_n
avg_precision = total_precision / len(val_loader)
avg_recall = total_recall / len(val_loader)
print('Finished calculating validation loss/acc: {}/{}'.format(avg_loss, avg_acc))
write_tb_logs(avg_loss, epoch, "Loss/val")
write_tb_logs(avg_acc, epoch, "Accuracy/val")
write_tb_logs(avg_precision, epoch, "Precision/val")
write_tb_logs(avg_recall, epoch, "Recall/val")
return avg_loss
if __name__ == '__main__':
parser = argparse.ArgumentParser()
### Training related arguments ###
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--n_epochs', type=int, default=1)
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--validate', action='store_true')
parser.add_argument('--pos_weight', action='store_true')
parser.add_argument('--checkpoint', type=str, default=None)
### Data related arguments ###
parser.add_argument('--frames_per_clip', type=int, default=3)
parser.add_argument('--dataset_root_dir', type=str, default=None)
parser.add_argument('--positive_labels', type=str, default=None, required=True)
parser.add_argument('--excluded_folders', type=str, default='')
parser.add_argument('--balanced_dataset', action='store_true')
### Logging related arguments ###
parser.add_argument('--exp_name', type=str, default="")
parser.add_argument('--use_tb', action='store_true')
### Scheduler related arguments ###
parser.add_argument('--scheduler_gamma', type=float, default=0.1)
parser.add_argument('--scheduler_step_size', type=int, default=1)
parser.add_argument('--scheduler_step_till_epoch', type=int, default=10)
### Model related arguments ###
parser.add_argument('--model_num_hidden_layers', type=int, default=1)
parser.add_argument('--model_hidden_dim', type=int, default=10)
### Input related arguments ###
# Convert the input `x = [frame_embedding1, frame_embedding2, ..., frame_embedding{n}]` to
# [frame_embedding1, frame_embedding2-frame_embedding1, ..., frame_embedding_{n}-frame_embedding_{n-1}]
parser.add_argument('--frame_diff', action='store_true')
args = parser.parse_args()
print('Arguments:', args)
# Annotate log file
# to activate tensorboard: python3 -m tensorboard.main --logdir=logs
writer = SummaryWriter(log_dir= f'../logs/{args.exp_name}',comment=f'_{args.exp_name}') if args.use_tb else None
# it is assumed that positive labels and excluded folders are passed as a string of labels separated by space
positive_labels = args.positive_labels.split(' ')
excluded_folders = args.excluded_folders.split(' ')
ds = DatasetFolder(root=args.dataset_root_dir, frames_per_clip=args.frames_per_clip, transform_train=batch_transform_train, transform_val=batch_transform_val, excluded_folders=excluded_folders, balanced_dataset=args.balanced_dataset)
ds.target_transform = get_target_transform(ds.class_to_idx, *positive_labels)
print(f'== DatasetFolder class: {ds.classes}')
print(f'== Class_to_idx: {ds.class_to_idx}')
print(f'== Number of samples in each class: {ds.class_n_samples}')
if args.pos_weight:
print(f'== Positive weight: {ds.pos_weight} \n')
loss_fn = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([ds.pos_weight]).to(device)) if args.pos_weight else nn.BCEWithLogitsLoss()
### START: Create training and validation sets ###
indices = list(range(len(ds)))
np.random.shuffle(indices)
split_train = int(np.floor(TRAINING_P * len(indices)))
train_indices, val_indices = indices[:split_train], indices[split_train:]
ds.val_indices = val_indices
ds.set_target_to_indices_dict(ds.target_transform, ds.samples)
train_sampler = SubsetRandomSampler(train_indices)
val_sampler = SubsetRandomSampler(val_indices)
kwargs = {'pin_memory': True, 'num_workers': 4} if device == 'cuda' else {}
train_loader = DataLoader(ds, sampler=train_sampler, batch_size=args.batch_size, **kwargs)
val_loader = DataLoader(ds, sampler=val_sampler, batch_size=args.batch_size, **kwargs)
### END: Create training and validation sets ###
scoringModel = ScoringModel(frames_per_clip=args.frames_per_clip, input_dim=EMBED_DIM, hidden_dim=args.model_hidden_dim, num_hidden_layers=args.model_num_hidden_layers)
optimizer = Adam([{'params': scoringModel.parameters()}], lr=args.lr)
scheduler = lr_scheduler.StepLR(optimizer, step_size=args.scheduler_step_size, gamma=args.scheduler_gamma)
if args.checkpoint:
print('Loading checkpoint ', args.checkpoint)
assert os.path.exists(args.checkpoint), 'File not found: {}'.format(args.checkpoint)
ckpt_dict = torch.load(args.checkpoint, map_location='cpu')
scoringModel = ckpt_dict['model']
optimizer.load_state_dict(ckpt_dict['optimizer_state_dict'])
scheduler.load_state_dict(ckpt_dict['scheduler_state_dict'])
scoringModel.to(device)
if args.validate:
scoringModel.eval()
validate(None)
else:
train_losses, val_losses = [], []
for epoch in range(args.n_epochs):
scoringModel.train()
loss = train(epoch)
train_losses.append(loss)
loss = validate(epoch)
val_losses.append(loss)
if epoch < args.scheduler_step_till_epoch:
scheduler.step()
ckpt_file = os.path.join(CHECKPOINTS_DIRECTORY, f'ckpt_epoch_{epoch}_loss_{train_losses[-1]}.ckpt')
ckpt = {'model': scoringModel, 'optimizer_state_dict': optimizer.state_dict(), 'scheduler_state_dict': scheduler.state_dict(), 'args': vars(args), 'epoch': epoch, 'train_losses': train_losses, 'val_losses': val_losses}
save_checkpoint(ckpt, ckpt_file)
print('=== Training over ===')
print('Train losses:', train_losses)
print('Val losses:', val_losses)
|