AnoshDamania commited on
Commit
8c8fd10
·
1 Parent(s): b3993d8

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +147 -0
app.py ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ import math
4
+ import matplotlib.pyplot as plt
5
+ from sklearn.preprocessing import MinMaxScaler
6
+ from sklearn.metrics import mean_squared_error
7
+ import tensorflow as tf
8
+ from tensorflow.keras.models import Sequential
9
+ from tensorflow.keras.layers import Dense
10
+ from tensorflow.keras.layers import LSTM
11
+
12
+ import gradio as gr
13
+
14
+ import yfinance as yf
15
+
16
+ def get_ans(inp):
17
+ tickers = yf.Tickers(inp)
18
+ x = tickers.tickers[inp].history(period="15y")
19
+ df = x
20
+ df.reset_index(inplace=True)
21
+ df1 = df.reset_index()['Close']
22
+ df['Date'] = pd.to_datetime(df['Date'])
23
+ scaler = MinMaxScaler(feature_range=(0, 1))
24
+ df1 = scaler.fit_transform(np.array(df1).reshape(-1, 1))
25
+ training_size = int(len(df1) * 0.65)
26
+ test_size = len(df1) - training_size
27
+ train_data, test_data = df1[0:training_size, :], df1[training_size:len(df1), :1]
28
+ def create_dataset(dataset, time_step=1):
29
+ dataX, dataY = [], []
30
+ for i in range(len(dataset) - time_step - 1):
31
+ a = dataset[i:(i + time_step), 0]
32
+ dataX.append(a)
33
+ dataY.append(dataset[i + time_step, 0])
34
+ return np.array(dataX), np.array(dataY)
35
+ time_step = 100
36
+ X_train, y_train = create_dataset(train_data, time_step)
37
+ X_test, ytest = create_dataset(test_data, time_step)
38
+
39
+ X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
40
+ X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], 1)
41
+ model = Sequential()
42
+ model.add(LSTM(50, return_sequences=True, input_shape=(100, 1)))
43
+ model.add(LSTM(50, return_sequences=True))
44
+ model.add(LSTM(50))
45
+ model.add(Dense(1))
46
+ model.compile(loss='mean_squared_error', optimizer='adam')
47
+ model.fit(X_train,y_train,validation_data=(X_test,ytest),epochs=2,batch_size=64,verbose=1)
48
+ train_predict=model.predict(X_train)
49
+ test_predict=model.predict(X_test)
50
+ train_predict=scaler.inverse_transform(train_predict)
51
+ test_predict=scaler.inverse_transform(test_predict)
52
+ look_back=100
53
+ trainPredictPlot = np.empty_like(df1)
54
+ trainPredictPlot[:, :] = np.nan
55
+ trainPredictPlot[look_back:len(train_predict)+look_back, :] = train_predict
56
+ # shift test predictions for plotting
57
+ testPredictPlot = np.empty_like(df1)
58
+ testPredictPlot[:, :] = np.nan
59
+ testPredictPlot[len(train_predict)+(look_back*2)+1:len(df1)-1, :] = test_predict
60
+ # plot baseline and predictions
61
+ plt.plot(scaler.inverse_transform(df1))
62
+ plt.plot(trainPredictPlot)
63
+ plt.plot(testPredictPlot)
64
+
65
+ x_input=test_data[341:].reshape(1,-1)
66
+ resize_var = x_input.size
67
+ temp_input=list(x_input)
68
+ temp_input=temp_input[0].tolist()
69
+ lst_output=[]
70
+ n_steps=100
71
+ i=0
72
+ while(i<30):
73
+
74
+ if(len(temp_input)>100):
75
+ #print(temp_input)
76
+ x_input=np.array(temp_input[1:])
77
+ # print("{} day input {}".format(i,x_input))
78
+ x_input=x_input.reshape(1,-1)
79
+ x_input = x_input.reshape((1, x_input.size, 1))
80
+ #print(x_input)
81
+ yhat = model.predict(x_input, verbose=0)
82
+ # print("{} day output {}".format(i,yhat))
83
+ temp_input.extend(yhat[0].tolist())
84
+ temp_input=temp_input[1:]
85
+ #print(temp_input)
86
+ lst_output.extend(yhat.tolist())
87
+ i=i+1
88
+ else:
89
+ x_input = x_input.reshape((1, n_steps,1))
90
+ yhat = model.predict(x_input, verbose=0)
91
+ # print(yhat[0])
92
+ temp_input.extend(yhat[0].tolist())
93
+ # print(len(temp_input))
94
+ lst_output.extend(yhat.tolist())
95
+ i=i+1
96
+
97
+ day_new=np.arange(1,101)
98
+ day_pred=np.arange(101,131)
99
+
100
+ df3=df1. tolist()
101
+ df3.extend (lst_output)
102
+ len_lis = len(lst_output)
103
+ df3=pd.DataFrame(df3, columns=['Values'])
104
+ df3['index']=range(1, len(df3) + 1)
105
+ lst_output = pd.DataFrame(lst_output, columns=["Values"])
106
+ lst_output['index']=range(1, len(lst_output) + 1)
107
+ return plt, gr.update(visible=True,value=df, x="Date",y="Open", height=500, width=800),gr.update(visible=True,value=df[-300:], x="Date",y="Open", height=500, width=800),gr.update(visible=True,value=df[-30:], x="Date",y="Open", height=500, width=800), max(np.asarray(df['Open'])), min(np.asarray(df['Open'])), max(np.asarray(df['Open'])[-300:]), min(np.asarray(df['Open'][-300:])), max(np.asarray(df['Open'])[-30:]), min(np.asarray(df['Open'][-30:])), lst_output["Values"][0], gr.update(visible=True,value=lst_output, x="index",y="Values", height=500, width=800), gr.update(visible=True,value=df3, x="index",y="Values", height=500, width=800), gr.update(visible=True,value=df3[-300:], x="index",y="Values", height=500, width=800)
108
+
109
+
110
+ with gr.Blocks() as demo:
111
+ with gr.Row().style(equal_height=True):
112
+ with gr.Column():
113
+ gr.Markdown("<center><h1>BI Project<h1></center>")
114
+ gr.Markdown("<center><h3>Give the Ticker of the company you want to analyse. We will provide complete insights on the given company.</h3></center>")
115
+ with gr.Row():
116
+ with gr.Column():
117
+ Name_of_the_company = gr.Textbox(placeholder="eg, GOOG / MSFT / AAPL", label="TICKER of the company")
118
+ btn = gr.Button("ANALYSE")
119
+ gr.Markdown("<center><h2>Analysis<h2></center>")
120
+ gr.Markdown("<h3>Regression Trends of Price<h3>")
121
+ mp = gr.Plot()
122
+ gr.Markdown("<h3>Price over time<h3>")
123
+ with gr.Tab("All Time"):
124
+ mp1 = gr.LinePlot(visible=False, label="All time", height=1000, width=1000)
125
+ with gr.Row():
126
+ Max_all = gr.Textbox(placeholder="The Maximum price the stock has ever reached", label='Maximum of all time')
127
+ Min_all = gr.Textbox(placeholder="The Minimum price the stock has ever reached", label="Minimum of all time")
128
+ with gr.Tab("Past year"):
129
+ mp2 = gr.LinePlot(visible=False, label="Last year")
130
+ with gr.Row():
131
+ Max_year = gr.Textbox(placeholder="The Maximum price for the last year", label='Maximum')
132
+ Min_year = gr.Textbox(placeholder="The Minimum price for the last year", label="Minimum")
133
+ with gr.Tab("Past few Days"):
134
+ mp3 = gr.LinePlot(visible=False, label="Past few Days")
135
+ with gr.Row():
136
+ Max_rec = gr.Textbox(placeholder="The Maximum price for the last few days", label='Recent Maximum')
137
+ Min_rec = gr.Textbox(placeholder="The Minimum price for the last few days", label="Recent Minimum")
138
+ gr.Markdown("<center><h2>Predictive Analysis</h2></center>")
139
+ Next_day = gr.Textbox(placeholder="Predicted price for tomorrow", label="Predicted price for Tomorrow")
140
+ Next_plot = gr.LinePlot(visible=False)
141
+ Next_plot_all = gr.LinePlot(visible=False)
142
+ Next_plot_year = gr.LinePlot(visible=False)
143
+
144
+
145
+ btn.click(get_ans, inputs=Name_of_the_company, outputs= [mp,mp1,mp2,mp3, Max_all, Min_all,Max_year, Min_year, Max_rec, Min_rec, Next_day, Next_plot, Next_plot_all, Next_plot_year])
146
+
147
+ demo.launch(inline = False)