File size: 12,236 Bytes
73863f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
from functools import partial
import json

# from datasets import load_dataset
import gradio as gr
# from huggingface_hub import get_hf_file_metadata, HfApi, hf_hub_download, hf_hub_url
# from huggingface_hub.repocard import metadata_load
import pandas as pd
import numpy as np

DATASETS = {
    "samsum": "SAMSum",
    "cnn": "CNN/DailyMail",
    "xsum": "XSum",
    "billsum": "BillSum",
    "multinews": "Multi-News",
}

MODELS = [
    "PEGASUS", #0
    "PEGASUS-X", #1
    "MTL-ABS", #2
    "BART SDPT/DAPT/TAPT", #3
    "Prefix-tuning", #4
    "ExtraPhrase", #5
    "Primera", #6
    "Se3", #7
    "DADS", #8
    "LML-LRS", #9
    "PSP", #10
    "Athena", #11
    "SPEC", #12
    "Z-Code++", #13
    "DIONYSUS", #14
    "COMPO", #15
    "UNISUMM", #16
    "Centrum", #17
    "ParaSum", #18
    "EFLRAS", #19
]

REPOS_PAPERS = {
    "PEGASUS": "https://github.com/google-research/pegasus", #0
    "PEGASUS-X": "https://github.com/google-research/pegasus", #1
    "MTL-ABS": "https://github.com/YiSyuanChen/MTL-ABS", #2
    "BART SDPT/DAPT/TAPT": "https://github.com/TysonYu/AdaptSum", #3
    "Prefix-tuning": "https://github.com/XiangLi1999/PrefixTuning", #4
    "ExtraPhrase": "https://github.com/loem-ms/ExtraPhrase", #5
    "Primera": "https://github.com/allenai/PRIMER", #6
    "Se3": "https://ojs.aaai.org/index.php/AAAI/article/view/21357", #7
    "DADS": "https://aclanthology.org/2022.findings-naacl.53.pdf", #8
    "LML-LRS": "https://dl.acm.org/doi/pdf/10.1145/3477495.3531908", #9
    "PSP": "https://aclanthology.org/2022.coling-1.553.pdf", #10
    "Athena": "https://www.sciencedirect.com/science/article/pii/S0925231223004794?casa_token=ptLMl-LZLbQAAAAA:9Aq7HEUf6dRrIg5MTj4hZm2eaWJSeTDKmnXxS52fkZ131ejkYHdZgGimL0TFCFXy57qF1k9KTKE​", #11
    "SPEC": "https://github.com/YiSyuanChen/SPEC", #12
    "Z-Code++": "https://arxiv.org/pdf/2208.09770.pdf", #13
    "DIONYSUS": "https://arxiv.org/pdf/2212.10018.pdf", #14
    "COMPO": "https://github.com/ozyyshr/Compo", #15
    "UNISUMM": "https://github.com/microsoft/UniSumm", #16
    "Centrum": "https://github.com/ratishsp/centrum", #17
    "ParaSum": "https://link.springer.com/chapter/10.1007/978-3-031-40289-0_9", #18
    "EFLRAS": "https://github.com/NLPlab-skku/SummaryXAI-QA/tree/main/Low-Resource-Sum", #19
}

TAXONOMY = [
    "Pre-training", #0
    "Centroid-based pre-training", #1
    "Data augmentation", #2
    "Segmentation", #3
    "Meta-learning", #4
    "Meta-transfer", #5
    "Extractive summarization", #6
    "Prefix tuning", #7
]

MODEL_TO_TAXONOMY = [
    TAXONOMY[0],
    TAXONOMY[0],
    TAXONOMY[5],
    TAXONOMY[0],
    TAXONOMY[7],
    TAXONOMY[2],
    TAXONOMY[0],
    TAXONOMY[3],
    TAXONOMY[2],
    TAXONOMY[4],
    TAXONOMY[0],
    TAXONOMY[3],
    TAXONOMY[5],
    TAXONOMY[0],
    TAXONOMY[0],
    TAXONOMY[2],
    TAXONOMY[0],
    TAXONOMY[1],
    TAXONOMY[6],
    TAXONOMY[5],
]

model_tax = np.array([MODELS, MODEL_TO_TAXONOMY]).transpose()

SAMSUM_DATA = [
    [model_tax[14][0], "base", model_tax[14][1], 0, 0, 39.60, 15.40, 30.10],
    [model_tax[14][0], "large", model_tax[14][1], 0, 0, 41.30, 16.20, 30.90],
    [model_tax[3][0], "SDPT w/RecAdam", model_tax[3][1], 300, 0, 45.23, 19.43, 35.37],
    [model_tax[3][0], "DAPT", model_tax[3][1], 300, 0, 41.22, 17.88, 32.40],
    [model_tax[3][0], "TAPT w/RecAdam", model_tax[3][1], 300, 0, 41.34, 17.88, 32.31],
    [model_tax[13][0], "large", model_tax[13][1], 0, 0, 26.50, 7.90, 20.50],
    [model_tax[13][0], "large", model_tax[13][1], 10, 0, 40.27, 17.40, 33.70],
    [model_tax[13][0], "large", model_tax[13][1], 100, 0, 47.60, 22.30, 38.70],
    [model_tax[16][0], "", model_tax[16][1], 0, 0, 22.17, 6.88, 17.08],
    [model_tax[16][0], "", model_tax[16][1], 10, 0, 43.89, 18.53, 34.76],
    [model_tax[16][0], "", model_tax[16][1], 100, 0, 46.93, 20.65, 37.28],
    [model_tax[8][0], "", model_tax[8][1], 10, 0, 32.50, 12.00, 27.00],
    [model_tax[8][0], "", model_tax[8][1], 100, 0, 43.90, 19.70, 36.10],
    [model_tax[15][0], "base, self-training", model_tax[15][1], 147, 0, 45.42, 21.23, 41.42],
    [model_tax[15][0], "large, self-training", model_tax[15][1], 147, 0, 49.78, 24.65, 45.41],
    [model_tax[15][0], "base, joint-training", model_tax[15][1], 147, 0, 44.89, 20.64, 40.58],
    [model_tax[15][0], "large, joint-training", model_tax[15][1], 147, 0, 49.14, 23.45, 44.35],
    [model_tax[12][0], "", model_tax[12][1], 10, 0, 46.06, 20.90, 40.34],
    [model_tax[12][0], "", model_tax[12][1], 100, 0, 51.94, 24.75, 46.97],
]

CNN_DATA = [
    [model_tax[13][0], "large", model_tax[13][1], 0, 0, 40.00, 17.30, 25.30],
    [model_tax[13][0], "large", model_tax[13][1], 10, 0, 40.00, 17.30, 25.30],
    [model_tax[13][0], "large", model_tax[13][1], 100, 0, 41.10, 18.40, 27.50],
    [model_tax[0][0], "large", model_tax[0][1], 0, 0, 32.90, 13.28, 29.38],
    [model_tax[0][0], "large", model_tax[0][1], 10, 0, 37.25, 15.84, 33.49],
    [model_tax[0][0], "large", model_tax[0][1], 100, 0, 40.28, 18.21, 37.03],
    [model_tax[1][0], "large", model_tax[1][1], 0, 0, 30.22, 11.88, 28.31],
    [model_tax[1][0], "large", model_tax[1][1], 10, 0, 36.12, 13.70, 30.26],
    [model_tax[1][0], "large", model_tax[1][1], 100, 0, 38.40, 17.02, 36.75],
    [model_tax[10][0], "", model_tax[10][1], 300, 0, 38.31, 15.94, 25.41],
    [model_tax[5][0], "", model_tax[5][1], 1000, 0, 34.47, 12.91, 31.36],
    [model_tax[9][0], "", model_tax[9][1], 10, 0, 39.34, 16.53, 25.40],
    [model_tax[9][0], "", model_tax[9][1], 100, 0, 39.94, 16.96, 26.09],
    [model_tax[19][0], "", model_tax[19][1], 10, 0, 39.50, 16.80, 25.72],
    [model_tax[19][0], "", model_tax[19][1], 100, 0, 40.53, 17.61, 26.64],
    [model_tax[18][0], "", model_tax[18][1], 200, 0, 40.81, 17.78, 36.94],
]

BILLSUM_DATA = [
    [model_tax[0][0], "large", model_tax[0][0], 0, 0, 41.02, 17.44, 25.24],
    [model_tax[0][0], "large", model_tax[0][0], 10, 0, 40.48, 18.49, 27.27],
    [model_tax[0][0], "large", model_tax[0][0], 100, 0, 44.78, 26.40, 34.40],
    [model_tax[1][0], "large", model_tax[1][1], 0, 0, 41.32, 18.04, 25.11],
    [model_tax[1][0], "large", model_tax[1][1], 10, 0, 42.55, 18.97, 26.92],
    [model_tax[1][0], "large", model_tax[1][1], 100, 0, 46.48, 27.77, 36.53],
    [model_tax[7][0], "LED base(512) w/Se3", model_tax[7][1], 10, 0, 46.94, 23.04, 29.29],
    [model_tax[7][0], "LED base(512) w/Se3", model_tax[7][1], 100, 0, 50.4, 27.73, 33.74],
    [model_tax[11][0], "", model_tax[11][1], 10, 0, 47.57, 24.14, 30.35],
    [model_tax[11][0], "", model_tax[11][1], 100, 0, 51.59, 29.36, 35.04],
    [model_tax[9][0], "", model_tax[9][1], 10, 0, 46.64, 25.07, 30.90],
    [model_tax[9][0], "", model_tax[9][1], 100, 0, 48.18, 27.18, 33.28],
    [model_tax[2][0], "", model_tax[2][1], 10, 0, 41.22, 18.61, 26.33],
    [model_tax[2][0], "", model_tax[2][1], 100, 0, 45.29, 22.74, 29.56],
    [model_tax[19][0], "", model_tax[19][1], 10, 0, 46.64, 25.07, 30.90],
    [model_tax[19][0], "", model_tax[19][1], 100, 0, 48.18, 27.18, 33.28],
]

XSUM_DATA = [
    [model_tax[0][0], "large", model_tax[0][1], 0, 0, 19.27, 3.00, 12.72],
    [model_tax[0][0], "large", model_tax[0][1], 10, 0, 19.39, 3.45, 14.02],
    [model_tax[0][0], "large", model_tax[0][1], 100, 0, 39.07, 16.44, 31.27],
    [model_tax[10][0], "", model_tax[10][1], 300, 0, 32.86, 11.27, 25.64],
    [model_tax[16][0], "", model_tax[16][1], 0, 0, 20.72, 3.62, 16.56],
    [model_tax[16][0], "", model_tax[16][1], 10, 0, 26.10, 7.20, 19.92],
    [model_tax[16][0], "", model_tax[16][1], 100, 0, 33.33, 11.36, 25.85],
    [model_tax[9][0], "", model_tax[9][1], 10, 0, 32.35, 11.86, 25.33],
    [model_tax[9][0], "", model_tax[9][1], 100, 0, 35.54, 13.94, 27.79],
    [model_tax[19][0], "", model_tax[19][1], 10, 0, 32.65, 12.10, 25.82],
    [model_tax[19][0], "", model_tax[19][1], 100, 0, 36.51, 14.55, 29.01],
    [model_tax[12][0], "", model_tax[12][1], 10, 0, 32.74, 10.90, 24.86],
    [model_tax[12][0], "", model_tax[12][1], 100, 0, 35.69, 12.88, 27.25],
    [model_tax[18][0], "", model_tax[18][1], 1000, 0, 21.15, 3.08, 15.91],
    [model_tax[4][0], "", model_tax[4][1], 100, 0, 35.20, 13.30, 28.10],
]

MN_DATA = [
    [model_tax[0][0], "large", model_tax[0][1], 0, 0, 36.54, 10.52, 18.67],
    [model_tax[0][0], "large", model_tax[0][1], 10, 0, 39.79, 12.56, 20.06],
    [model_tax[0][0], "large", model_tax[0][1], 100, 0, 41.04, 13.88, 21.52],
    [model_tax[6][0], "", model_tax[6][1], 0, 0, 39.09, 13.91, 19.19],
    [model_tax[6][0], "", model_tax[6][1], 10, 0, 44.02, 15.54, 22.03],
    [model_tax[6][0], "", model_tax[6][1], 100, 0, 46.01, 16.76, 22.91],
    [model_tax[17][0], "", model_tax[17][1], 0, 0, 43.5, 15.7, 22.4],
    [model_tax[17][0], "", model_tax[17][1], 10, 0, 43.4, 16.6, 22.2],
    [model_tax[17][0], "", model_tax[17][1], 100, 0, 45.7, 16.8, 23.2],
    [model_tax[19][0], "", model_tax[19][1], 10, 0, 43.60, 14.85, 20.70],
    [model_tax[19][0], "", model_tax[19][1], 100, 0, 45.55, 16.01, 22.12],
    [model_tax[2][0], "", model_tax[2][1], 10, 0, 38.88, 12.78, 19.88],
    [model_tax[2][0], "", model_tax[2][1], 100, 0, 39.64, 13.64, 20.45],
]

COL_NAMES = [
    "Rank",
    "Model",
    "Additional info",
    "Taxonomy",
    "Training samples",
    "ROUGE",
    "ROUGE-1",
    "ROUGE-2",
    "ROUGE-L",
]

data = {
    "samsum": pd.DataFrame(SAMSUM_DATA),
    "cnn": pd.DataFrame(CNN_DATA),
    "billsum": pd.DataFrame(BILLSUM_DATA),
    "xsum": pd.DataFrame(XSUM_DATA),
    "multinews": pd.DataFrame(MN_DATA),
}

def make_clickable(text, url):
    return "<u>[{}]({})</u>".format(text, url)

for dataset in data:
    data[dataset].columns = COL_NAMES[1:]
    data[dataset]["ROUGE"] = np.around(np.mean(data[dataset][["ROUGE-1", "ROUGE-2", "ROUGE-L"]], axis=1), decimals=2)
    data[dataset].sort_values("ROUGE", ascending=False, inplace=True) # to default sort by ROUGE
    # Add Rank column
    data[dataset].insert(0, COL_NAMES[0], range(1, 1 + len(data[dataset])))
    # Add link to papers/repos
    data[dataset]["Model"] = data[dataset]["Model"].apply(lambda x: make_clickable(x, REPOS_PAPERS[x]))
    print(data[dataset]["Model"])
    # data[dataset].drop("ROUGE", axis=1, inplace=True)


NUM_DATASETS = len(set(DATASETS))
NUM_MODELS = len(set(MODELS))


# 1. Force headers to wrap
# 2. Force model column (maximum) width
# 3. Prevent model column from overflowing, scroll instead
css = """
table > thead {
    white-space: normal
}
table {
    --cell-width-1: 210px
}
table > tbody > tr > td:nth-child(2) > div {
    overflow-x: auto
}
"""

block = gr.Blocks(css=css)
with block:
    gr.Markdown(f"""
    This is a leaderboard for Few-Shot Summarization (FSS).

    - **Total Datasets**: {NUM_DATASETS}
    - **Total Models**: {NUM_MODELS}
    - **Metric**: ROUGE Score

    For more information about the metrics and models employed and to gain a greater understanding of the general taxonomy of FSS, please refer to our [Survey on FSS](the paper will be published soon 🤗).
    """)

    with gr.Tabs():
         for dataset in data:
              dataset_name = DATASETS[dataset]
              with gr.TabItem(dataset_name):
                with gr.Row():
                     gr.Markdown(f"""
                     **{dataset_name}** leaderboard
                     - **ROUGE** is the average of ROUGE-1, ROUGE-2 and ROUGE-L
                     - **RANK** is defined following ROUGE column values
                     """)
                with gr.Row():
                    data_classification = gr.components.Dataframe(
                        data[dataset],
                        datatype=["markdown", "markdown", "markdown", "number", "number", "number", "number", "number"],
                        type="pandas",
                    )

    # gr.Markdown(r"""

    # Made with ❤️ for NLP. If this work is useful to you, please consider citing:

    # ```bibtex
    # @article{muennighoff2022mteb,
    #     doi = {10.48550/ARXIV.2210.07316},
    #     url = {https://arxiv.org/abs/2210.07316},
    #     author = {Qui, Quo, Qua},
    #     title = {Survey on Low Resource Summarization},
    #     publisher = {arXiv},
    #     journal={arXiv preprint arXiv:2210.07316},  
    #     year = {2024}
    # }
    # ```
    # """)

block.queue(max_size=10)
block.launch()