from tenacity import retry, stop_after_attempt, wait_random_exponential
from tqdm import tqdm
import time
import sys

# import openai
import time
# import pandas as pd
import random
import csv
import os
import pickle
import json
import nltk
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('punkt_tab')
from nltk.tokenize import sent_tokenize
from nltk.corpus import stopwords
import string
from typing import List
import difflib


# import tiktoken

import re
from nltk.tokenize import sent_tokenize
from collections import defaultdict


import nltk
from nltk.tokenize import sent_tokenize
from nltk.tokenize import word_tokenize
import numpy as np
from retrieve import get_retrieved_results, get_slide

# Ensure you have downloaded the 'punkt' tokenizer models
nltk.download('punkt')





import streamlit as st

# Get the parent directory
# parent_dir = os.path.abspath(os.path.join(os.getcwd(), os.pardir))
# Add the parent directory to the system path
# sys.path.append(parent_dir)

from utils import AzureModels, write_to_file, read_from_file
# from utils_open import OpenModels

# Function to calculate similarity
def calculate_similarity(sentence1: str, sentence2: str) -> float:
    return difflib.SequenceMatcher(None, sentence1, sentence2).ratio()

# Function to highlight sentences based on similarity
def highlight_sentences(predicted: str, ground_truth: str) -> str:
    ground_truth_sentences = nltk.sent_tokenize(ground_truth)
    predicted_sentences = nltk.sent_tokenize(predicted)

    highlighted_text = ""
    
    for pred_sentence in predicted_sentences:
        max_similarity = 0
        for gt_sentence in ground_truth_sentences:
            similarity = calculate_similarity(pred_sentence, gt_sentence)
            if similarity > max_similarity:
                max_similarity = similarity
        # Determine shade of green
        shade = max_similarity  # No need to convert to int, max_similarity is already in [0, 1]
        highlighted_text += f'<span style="background-color: rgba(0, 255, 0, {shade})">{pred_sentence}</span> '

    return highlighted_text

st.title('Multi-Document Narrative Generation')

# options = ["Select", "Adobe Firefly", "Adobe Acrobat"]
# selection = st.selectbox('Select an example', options)

selection = "Adobe Firefly"

# Input for Presentation Title
presentation_title = st.text_input("Presentation Title")

# Input for Slide Title
slide_title = st.text_input("Slide Title")

# Option for uploading a folder (simulated by allowing multiple file uploads)
uploaded_files = st.file_uploader(
    "Upload source documents (multiple .txt files allowed)", 
    accept_multiple_files=True, 
    type="txt"
)

if selection=="Select":
    pass
elif selection=="Adobe Firefly":
    # with open('wiki_1.json', 'r') as fr:
    #     list_1 = json.load(fr)
    
    with open('wiki_2.json', 'r') as fr:
        list_2 = json.load(fr)

    tmp_ref_abstract = {}


    file_count=0
    for file in uploaded_files:
        tmp_filename = file.name
        tmp_content = file.read().decode('utf-8').strip()
        tmp_ref_abstract[tmp_filename] = tmp_content
        file_count+=1
        
    document_name = presentation_title
    section_names = [slide_title]*file_count
    ref_doc_indices = np.arange(1,file_count+1).tolist()

    list_1 = [
        {
            "abstract": "Write the '{}' section of the article titled '{}'.".format(slide_title, presentation_title),
            "ref_abstract": tmp_ref_abstract,
            "related_work": ""
        }
    ]
else:
    with open('wiki_2.json', 'r') as fr:
        list_1 = json.load(fr)
    
    with open('wiki_1.json', 'r') as fr:
        list_2 = json.load(fr)
    document_name = "Adobe Acrobat"
    section_names = ["Introduction"]*3+["History"]*3+["Document Cloud"]*2
    ref_doc_indices = np.arange(1,4).tolist() + np.arange(1,4).tolist() + np.arange(1,3).tolist()

# Initialize session state
if 'submit_clicked' not in st.session_state:
    st.session_state.submit_clicked = False
    
inp_doc_list = []
inp_keys_list = []
retrieved_doc_list = []


if st.button('Submit'):
    if 'retrieve_clicked' not in st.session_state:
        st.session_state.retrieve_clicked = False  
    st.session_state.submit_clicked = True
    # for item, ret_item in zip(list_1, retrieved_out):
    for item in list_1:
        for key in item['ref_abstract']:
            inp_doc_list.append(item['ref_abstract'][key])
            inp_keys_list.append(key)
            # retrieved_doc_list.append(ret_item['ref_abstract'][key]['abstract'])    
    # Initialize session state
    # if 'retrieve_clicked' not in st.session_state:
    #     st.session_state.retrieve_clicked = False
    
    retrieve_prompt_template = "{} : Document {} for the '{}' Section of the Article titled '{}'"
    
    ui_doc_list = []
    ui_retrieved_doc_list = []
    
    # 5 input text boxes for 5 input documents
    st.header('Input Documents')
    # doc1 = st.text_area('Document 1', value="1. What up bruh??")
    for i in range(len(section_names)):
        ui_doc_list.append(st.text_area(retrieve_prompt_template.format(inp_keys_list[i], ref_doc_indices[i], section_names[i], document_name), value=inp_doc_list[i]))
    # write_to_file('ui_doc.json', ui_inp_keys_list.jsondoc_list)
    # ref_doc_indices[i], section_names[i], document_name
    write_to_file("inp_keys_list.json", inp_keys_list)
    write_to_file("section_names.json", section_names)
    write_to_file("document_name.pickle", document_name)
    

if st.session_state.submit_clicked:
    if st.button('Retrieve'):
        # ui_doc_list=read_from_file('ui_doc.json')
        inp_keys_list = read_from_file("inp_keys_list.json")
        section_names = read_from_file("section_names.json")
        document_name = read_from_file("document_name.pickle")        
        ui_retrieved_doc_list=[]
        if 'organize_clicked' not in st.session_state:
            st.session_state.organize_clicked = False
        st.session_state.retrieve_clicked = True
        retrieved_out = get_retrieved_results("gpt4o", 0, "fixed", list_2, list_1)
        write_to_file("retrieved_docs.json", retrieved_out)
        retrieved_out_train = get_retrieved_results("gpt4o", 0, "fixed", list_1, list_2)
        write_to_file("retrieved_docs_train.json", retrieved_out_train)
    
        for ret_item in retrieved_out:
            for key in ret_item['ref_abstract']:
                # inp_doc_list.append(item['ref_abstract'][key])    
                retrieved_doc_list.append(ret_item['ref_abstract'][key]['abstract'])
        
        # Step 2: Lowercase the documents
        
        st.header('Retrieved Documents')

        retrieve_prompt_template = "{} : Document {} for the '{}' Section of the Article titled '{}'"
        
        for i in range(len(section_names)):
            ui_retrieved_doc_list.append(st.text_area(retrieve_prompt_template.format(inp_keys_list[i], ref_doc_indices[i], section_names[i], document_name), value=retrieved_doc_list[i]))
    if st.session_state.retrieve_clicked:
        if st.button('Organize'):
            if 'summarize_clicked' not in st.session_state:
                st.session_state.summarize_clicked = False                    
            st.session_state.organize_clicked = True
            st.header("Organization of the documents in the narrative")
            topics_list = [slide_title]
            
            organize_list = []
            ui_organize_list = []
            
            test_list = read_from_file("retrieved_docs.json")
            train_list = read_from_file("retrieved_docs_train.json")
            organize_out = get_retrieved_results("gpt4o", 1, "fixed", train_list, test_list, True)
            for i in range(len(organize_out)):
                organize_list.append(organize_out[i])
                ui_organize_list.append(st.text_area("Section: " + topics_list[i], value=organize_out[i]))
            write_to_file("organized_docs.json", organize_out)

        if st.session_state.organize_clicked:
            if st.button("Summarize"):
                # if 'narrative_clicked' not in st.session_state:
                #     st.session_state.narrative_clicked = False                                    
                st.session_state.summarize_clicked = True
                st.header("Intent-based multi-document summary")
                topics_list = [slide_title]
                generate_list = []
                ui_generate_list = []
                slides_list = []
                test_list = read_from_file("retrieved_docs.json")
                train_list = read_from_file("retrieved_docs_train.json")                
                organize_out = read_from_file("organized_docs.json")
                gen_summary_dict = get_retrieved_results("gpt4o", 1, "fixed", train_list, test_list, False, organize_out)
                for i in range(len(gen_summary_dict)):
                    # highlighted_summary = highlight_sentences(gen_summary_dict[i], test_list[i]['abstract'])
                    slides_list.append(get_slide(topics_list[i], gen_summary_dict[i]))
                    # generate_list.append(.format(topics_list[i], gen_summary_dict[i]))
                    st.markdown(f"## {topics_list[i]}")
                    st.markdown(f"{gen_summary_dict[i]}")
                    # st.markdown(highlighted_summary, unsafe_allow_html=True)
                st.header("Generated Narrative")
                for i in range(len(slides_list)):
                    st.markdown("---")
                    st.markdown(slides_list[i])
                    st.markdown("---")
            # if st.session_state.summarize_clicked:
            #     if st.button("Narrative"):                
            #         st.session_state.narrative_clicked = True