Spaces:
Runtime error
Runtime error
| # GMFlow with refinement | |
| # number of gpus for training, please set according to your hardware | |
| # by default use all gpus on a machine | |
| # can be trained on 4x 32G V100 or 4x 40GB A100 or 8x 16G V100 gpus | |
| NUM_GPUS=4 | |
| # chairs | |
| CHECKPOINT_DIR=checkpoints/chairs-gmflow_with_refine && \ | |
| mkdir -p ${CHECKPOINT_DIR} && \ | |
| python -m torch.distributed.launch --nproc_per_node=${NUM_GPUS} --master_port=9989 main.py \ | |
| --launcher pytorch \ | |
| --checkpoint_dir ${CHECKPOINT_DIR} \ | |
| --batch_size 16 \ | |
| --val_dataset chairs sintel kitti \ | |
| --lr 4e-4 \ | |
| --image_size 384 512 \ | |
| --padding_factor 32 \ | |
| --upsample_factor 4 \ | |
| --num_scales 2 \ | |
| --attn_splits_list 2 8 \ | |
| --corr_radius_list -1 4 \ | |
| --prop_radius_list -1 1 \ | |
| --with_speed_metric \ | |
| --val_freq 10000 \ | |
| --save_ckpt_freq 10000 \ | |
| --num_steps 100000 \ | |
| 2>&1 | tee -a ${CHECKPOINT_DIR}/train.log | |
| # things (our final model is trained for 800K iterations, for ablation study, you can train for 200K) | |
| CHECKPOINT_DIR=checkpoints/things-gmflow_with_refine && \ | |
| mkdir -p ${CHECKPOINT_DIR} && \ | |
| python -m torch.distributed.launch --nproc_per_node=${NUM_GPUS} --master_port=9989 main.py \ | |
| --launcher pytorch \ | |
| --checkpoint_dir ${CHECKPOINT_DIR} \ | |
| --resume checkpoints/chairs-gmflow_with_refine/step_100000.pth \ | |
| --stage things \ | |
| --batch_size 8 \ | |
| --val_dataset things sintel kitti \ | |
| --lr 2e-4 \ | |
| --image_size 384 768 \ | |
| --padding_factor 32 \ | |
| --upsample_factor 4 \ | |
| --num_scales 2 \ | |
| --attn_splits_list 2 8 \ | |
| --corr_radius_list -1 4 \ | |
| --prop_radius_list -1 1 \ | |
| --with_speed_metric \ | |
| --val_freq 40000 \ | |
| --save_ckpt_freq 50000 \ | |
| --num_steps 800000 \ | |
| 2>&1 | tee -a ${CHECKPOINT_DIR}/train.log | |
| # sintel | |
| CHECKPOINT_DIR=checkpoints/sintel-gmflow_with_refine && \ | |
| mkdir -p ${CHECKPOINT_DIR} && \ | |
| python -m torch.distributed.launch --nproc_per_node=${NUM_GPUS} --master_port=9989 main.py \ | |
| --launcher pytorch \ | |
| --checkpoint_dir ${CHECKPOINT_DIR} \ | |
| --resume checkpoints/things-gmflow_with_refine/step_800000.pth \ | |
| --stage sintel \ | |
| --batch_size 8 \ | |
| --val_dataset sintel kitti \ | |
| --lr 2e-4 \ | |
| --image_size 320 896 \ | |
| --padding_factor 32 \ | |
| --upsample_factor 4 \ | |
| --num_scales 2 \ | |
| --attn_splits_list 2 8 \ | |
| --corr_radius_list -1 4 \ | |
| --prop_radius_list -1 1 \ | |
| --with_speed_metric \ | |
| --val_freq 20000 \ | |
| --save_ckpt_freq 20000 \ | |
| --num_steps 200000 \ | |
| 2>&1 | tee -a ${CHECKPOINT_DIR}/train.log | |
| # kitti | |
| CHECKPOINT_DIR=checkpoints/kitti-gmflow_with_refine && \ | |
| mkdir -p ${CHECKPOINT_DIR} && \ | |
| python -m torch.distributed.launch --nproc_per_node=${NUM_GPUS} --master_port=9989 main.py \ | |
| --launcher pytorch \ | |
| --checkpoint_dir ${CHECKPOINT_DIR} \ | |
| --resume checkpoints/sintel-gmflow_with_refine/step_200000.pth \ | |
| --stage kitti \ | |
| --batch_size 8 \ | |
| --val_dataset kitti \ | |
| --lr 2e-4 \ | |
| --image_size 320 1152 \ | |
| --padding_factor 32 \ | |
| --upsample_factor 4 \ | |
| --num_scales 2 \ | |
| --attn_splits_list 2 8 \ | |
| --corr_radius_list -1 4 \ | |
| --prop_radius_list -1 1 \ | |
| --with_speed_metric \ | |
| --val_freq 10000 \ | |
| --save_ckpt_freq 10000 \ | |
| --num_steps 100000 \ | |
| 2>&1 | tee -a ${CHECKPOINT_DIR}/train.log | |
| # a final note: if your training is terminated unexpectedly, you can resume from the latest checkpoint | |
| # an example: resume chairs training | |
| # CHECKPOINT_DIR=checkpoints/chairs-gmflow_with_refine && \ | |
| # mkdir -p ${CHECKPOINT_DIR} && \ | |
| # python -m torch.distributed.launch --nproc_per_node=${NUM_GPUS} --master_port=9989 main.py \ | |
| # --launcher pytorch \ | |
| # --checkpoint_dir ${CHECKPOINT_DIR} \ | |
| # --resume checkpoints/chairs-gmflow_with_refine/checkpoint_latest.pth \ | |
| # --batch_size 16 \ | |
| # --val_dataset chairs sintel kitti \ | |
| # --lr 4e-4 \ | |
| # --image_size 384 512 \ | |
| # --padding_factor 32 \ | |
| # --upsample_factor 4 \ | |
| # --num_scales 2 \ | |
| # --attn_splits_list 2 8 \ | |
| # --corr_radius_list -1 4 \ | |
| # --prop_radius_list -1 1 \ | |
| # --with_speed_metric \ | |
| # --val_freq 10000 \ | |
| # --save_ckpt_freq 10000 \ | |
| # --num_steps 100000 \ | |
| # 2>&1 | tee -a ${CHECKPOINT_DIR}/train.log | |