Spaces:
Runtime error
Runtime error
import torch | |
import torchvision.transforms as transforms | |
import torch.utils.data as data | |
from util import task | |
from .image_folder import make_dataset | |
import random | |
import numpy as np | |
import copy | |
import skimage.morphology as sm | |
from PIL import Image, ImageFile, ImageOps | |
ImageFile.LOAD_TRUNCATED_IMAGES = True | |
###################################################################################### | |
# Create the dataloader | |
###################################################################################### | |
class CreateDataset(data.Dataset): | |
def __init__(self, opt): | |
self.opt = opt | |
self.img_paths, self.img_size = make_dataset(opt.img_file) | |
if opt.mask_file != 'none': # load the random mask files for training and testing | |
self.mask_paths, self.mask_size = make_dataset(opt.mask_file) | |
self.transform = get_transform(opt, convert=False, augment=False) | |
fixed_opt = copy.deepcopy(opt) | |
fixed_opt.preprocess = 'scale_longside' | |
fixed_opt.load_size = fixed_opt.fixed_size | |
fixed_opt.no_flip = True | |
self.transform_fixed = get_transform(fixed_opt, convert=True, augment=False) | |
def __len__(self): | |
"""return the total number of examples in the dataset""" | |
return self.img_size | |
def __getitem__(self, item): | |
"""return a data point and its metadata information""" | |
# load the image and conditional input | |
img_org, img, img_path = self._load_img(item) | |
if self.opt.batch_size > 1: # padding the image to the same size for batch training | |
img_org = transforms.functional.pad(img_org, (0, 0, self.opt.fine_size-self.img_h, self.opt.fine_size-self.img_w)) | |
img = transforms.functional.pad(img, (0, 0, self.opt.fixed_size - img.size(-1), self.opt.fixed_size - img.size(-2))) | |
pad_mask = torch.zeros_like(img_org) | |
pad_mask[:, :self.img_w, :self.img_h] = 1 | |
# load the mask | |
mask, mask_type = self._load_mask(item, img_org) | |
if self.opt.reverse_mask: | |
if self.opt.isTrain: | |
mask = 1 - mask if random.random() > 0.8 else mask | |
else: | |
mask = 1 - mask | |
return {'img_org': img_org, 'img': img, 'img_path': img_path, 'mask': mask, 'pad_mask': pad_mask} | |
def name(self): | |
return "" | |
def _load_img(self, item): | |
"""load the original image and preprocess image""" | |
img_path = self.img_paths[item % self.img_size] | |
img_pil = Image.open(img_path).convert('RGB') | |
img_org = self.transform(img_pil) | |
img = self.transform_fixed(img_org) | |
img_org = transforms.ToTensor()(img_org) | |
img_pil.close() | |
self.img_c, self.img_w, self.img_h = img_org.size() | |
return img_org, img, img_path | |
def _mask_dilation(self, mask): | |
"""mask erosion for different region""" | |
mask = np.array(mask) | |
pixel = np.random.randint(3, 25) | |
mask = sm.erosion(mask, sm.square(pixel)).astype(np.uint8) | |
return mask | |
def _load_mask(self, item, img): | |
"""load the mask for image completion task""" | |
c, h, w = img.size() | |
if isinstance(self.opt.mask_type, list): | |
mask_type_index = random.randint(0, len(self.opt.mask_type) - 1) | |
mask_type = self.opt.mask_type[mask_type_index] | |
else: | |
mask_type = self.opt.mask_type | |
if mask_type == 0: # center mask | |
if random.random() > 0.3 and self.opt.isTrain: | |
return task.random_regular_mask(img), mask_type # random regular mask | |
return task.center_mask(img), mask_type | |
elif mask_type == 1: # random regular mask | |
return task.random_regular_mask(img), mask_type | |
elif mask_type == 2: # random irregular mask | |
return task.random_irregular_mask(img), mask_type | |
elif mask_type == 3: | |
# external mask from "Image Inpainting for Irregular Holes Using Partial Convolutions (ECCV18)" | |
if self.opt.isTrain: | |
mask_index = random.randint(0, self.mask_size-1) | |
mask_transform = transforms.Compose( | |
[ | |
transforms.RandomHorizontalFlip(), | |
transforms.RandomRotation(10), | |
transforms.RandomCrop([self.opt.fine_size + 64, self.opt.fine_size + 64]), | |
transforms.Resize([h, w]) | |
] | |
) | |
else: | |
mask_index = item | |
mask_transform = transforms.Compose( | |
[ | |
transforms.Resize([h, w]) | |
] | |
) | |
mask_pil = Image.open(self.mask_paths[mask_index]).convert('L') | |
mask = mask_transform(mask_pil) | |
mask_pil.close() | |
if self.opt.isTrain: | |
mask = self._mask_dilation(mask) | |
else: | |
mask = np.array(mask) < 128 | |
mask = torch.tensor(mask).view(1, h, w).float() | |
return mask, mask_type | |
else: | |
raise NotImplementedError('mask type [%s] is not implemented' % str(mask_type)) | |
def dataloader(opt): | |
datasets = CreateDataset(opt) | |
dataset = data.DataLoader(datasets, batch_size=opt.batch_size, shuffle=not opt.no_shuffle, | |
num_workers=int(opt.nThreads), drop_last=True) | |
return dataset | |
###################################################################################### | |
# Basic image preprocess function | |
###################################################################################### | |
def _make_power_2(img, power, method=Image.BICUBIC): | |
"""resize the image to the size of log2(base) times""" | |
ow, oh = img.size | |
base = 2 ** power | |
nw, nh = int(max(1, round(ow / base)) * base), int(max(1, round(oh / base)) * base) | |
if nw == ow and nh == oh: | |
return img | |
return img.resize((nw, nh), method) | |
def _random_zoom(img, target_width, method=Image.BICUBIC): | |
"""random resize the image scale""" | |
zoom_level = np.random.uniform(0.8, 1.0, size=[2]) | |
ow, oh = img.size | |
nw, nh = int(round(max(target_width, ow * zoom_level[0]))), int(round(max(target_width, oh * zoom_level[1]))) | |
return img.resize((nw, nh), method) | |
def _scale_shortside(img, target_width, method=Image.BICUBIC): | |
"""resize the short side to the target width""" | |
ow, oh = img.size | |
shortsize = min(ow, oh) | |
scale = target_width / shortsize | |
return img.resize((round(ow * scale), round(oh * scale)), method) | |
def _scale_longside(img, target_width, method=Image.BICUBIC): | |
"""resize the long side to the target width""" | |
ow, oh = img.size | |
longsize = max(ow, oh) | |
scale = target_width / longsize | |
return img.resize((round(ow * scale), round(oh * scale)), method) | |
def _scale_randomside(img, target_width, method=Image.BICUBIC): | |
"""resize the side to the target width with random side""" | |
if random.random() > 0.5: | |
return _scale_shortside(img, target_width, method) | |
else: | |
return _scale_longside(img, target_width, method) | |
def _crop(img, pos=None, size=None): | |
"""crop the image based on the given pos and size""" | |
ow, oh = img.size | |
if size is None: | |
return img | |
nw = min(ow, size) | |
nh = min(oh, size) | |
if (ow > nw or oh > nh): | |
if pos is None: | |
x1 = np.random.randint(0, int(ow-nw)+1) | |
y1 = np.random.randint(0, int(oh-nh)+1) | |
else: | |
x1, y1 = pos | |
return img.crop((x1, y1, x1 + nw, y1 + nh)) | |
return img | |
def _pad(img): | |
"""expand the image to the square size""" | |
ow, oh = img.size | |
size = max(ow, oh) | |
return ImageOps.pad(img, (size, size), centering=(0, 0)) | |
def _flip(img, flip): | |
if flip: | |
return img.transpose(Image.FLIP_LEFT_RIGHT) | |
return img | |
def get_transform(opt, params=None, method=Image.BICUBIC, convert=True, augment=False): | |
"""get the transform functions""" | |
transforms_list = [] | |
if 'resize' in opt.preprocess: | |
osize = [opt.load_size, opt.load_size] | |
transforms_list.append(transforms.Resize(osize)) | |
elif 'scale_shortside' in opt.preprocess: | |
transforms_list.append(transforms.Lambda(lambda img: _scale_shortside(img, opt.load_size, method))) | |
elif 'scale_longside' in opt.preprocess: | |
transforms_list.append(transforms.Lambda(lambda img: _scale_longside(img, opt.load_size, method))) | |
elif "scale_randomside" in opt.preprocess: | |
transforms_list.append(transforms.Lambda(lambda img: _scale_randomside(img, opt.load_size, method))) | |
if 'zoom' in opt.preprocess: | |
transforms_list.append(transforms.Lambda(lambda img: _random_zoom(img, opt.load_size, method))) | |
if 'crop' in opt.preprocess and opt.isTrain: | |
transforms_list.append(transforms.Lambda(lambda img: _crop(img, size=opt.fine_size))) | |
if 'pad' in opt.preprocess: | |
transforms_list.append(transforms.Lambda(lambda img: _pad(img))) # padding image to square | |
transforms_list.append(transforms.Lambda(lambda img: _make_power_2(img, opt.data_powers, method))) | |
if not opt.no_flip and opt.isTrain: | |
transforms_list.append(transforms.RandomHorizontalFlip()) | |
if augment and opt.isTrain: | |
transforms_list.append(transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.2)) | |
if convert: | |
transforms_list.append(transforms.ToTensor()) | |
return transforms.Compose(transforms_list) |