Spaces:
Runtime error
Runtime error
File size: 23,897 Bytes
ec0fdfd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
import os
from pathlib import Path
from optimization.constants import ASSETS_DIR_NAME, RANKED_RESULTS_DIR
from utils.metrics_accumulator import MetricsAccumulator
from utils.video import save_video
from utils.fft_pytorch import HighFrequencyLoss
from numpy import random
from optimization.augmentations import ImageAugmentations
from PIL import Image
import torch
import torchvision
from torchvision import transforms
import torchvision.transforms.functional as F
from torchvision.transforms import functional as TF
from torch.nn.functional import mse_loss
from optimization.losses import range_loss, d_clip_loss
import lpips
import numpy as np
from CLIP import clip
from guided_diffusion.guided_diffusion.script_util import (
create_model_and_diffusion,
model_and_diffusion_defaults,
create_classifier,
classifier_defaults,
)
from utils.visualization import show_tensor_image, show_editied_masked_image
from utils.change_place import change_place, find_bbox
import pdb
import cv2
def create_classifier_ours():
model = torchvision.models.resnet50()
ckpt = torch.load('checkpoints/DRA_resnet50.pth')['model_state_dict']
model.load_state_dict({k.replace('module.','').replace('last_linear','fc'):v for k,v in ckpt.items()})
model = torch.nn.Sequential(*[torch.nn.Upsample(size=(256,256)), model])
return model
class ImageEditor:
def __init__(self, args) -> None:
self.args = args
os.makedirs(self.args.output_path, exist_ok=True)
self.ranked_results_path = Path(os.path.join(self.args.output_path, RANKED_RESULTS_DIR))
os.makedirs(self.ranked_results_path, exist_ok=True)
if self.args.export_assets:
self.assets_path = Path(os.path.join(self.args.output_path, ASSETS_DIR_NAME))
os.makedirs(self.assets_path, exist_ok=True)
if self.args.seed is not None:
torch.manual_seed(self.args.seed)
np.random.seed(self.args.seed)
random.seed(self.args.seed)
self.model_config = model_and_diffusion_defaults()
self.model_config.update(
{
"attention_resolutions": "32, 16, 8",
"class_cond": self.args.model_output_size == 512,
"diffusion_steps": 1000,
"rescale_timesteps": True,
"timestep_respacing": self.args.timestep_respacing,
"image_size": self.args.model_output_size,
"learn_sigma": True,
"noise_schedule": "linear",
"num_channels": 256,
"num_head_channels": 64,
"num_res_blocks": 2,
"resblock_updown": True,
"use_fp16": True,
"use_scale_shift_norm": True,
}
)
self.classifier_config = classifier_defaults()
self.classifier_config.update(
{
"image_size": self.args.model_output_size,
}
)
# Load models
self.device = torch.device(
f"cuda:{self.args.gpu_id}" if torch.cuda.is_available() else "cpu"
)
print("Using device:", self.device)
self.model, self.diffusion = create_model_and_diffusion(**self.model_config)
self.model.load_state_dict(
torch.load(
"checkpoints/256x256_diffusion_uncond.pt"
if self.args.model_output_size == 256
else "checkpoints/512x512_diffusion.pt",
map_location="cpu",
)
)
# self.model.requires_grad_(False).eval().to(self.device)
self.model.eval().to(self.device)
for name, param in self.model.named_parameters():
if "qkv" in name or "norm" in name or "proj" in name:
param.requires_grad_()
if self.model_config["use_fp16"]:
self.model.convert_to_fp16()
self.classifier = create_classifier(**self.classifier_config)
self.classifier.load_state_dict(
torch.load("checkpoints/256x256_classifier.pt", map_location="cpu")
)
# self.classifier.requires_grad_(False).eval().to(self.device)
# self.classifier = create_classifier_ours()
self.classifier.eval().to(self.device)
if self.classifier_config["classifier_use_fp16"]:
self.classifier.convert_to_fp16()
self.clip_model = (
clip.load("ViT-B/16", device=self.device, jit=False)[0].eval().requires_grad_(False)
)
self.clip_size = self.clip_model.visual.input_resolution
self.clip_normalize = transforms.Normalize(
mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]
)
self.to_tensor = transforms.ToTensor()
self.lpips_model = lpips.LPIPS(net="vgg").to(self.device)
self.image_augmentations = ImageAugmentations(self.clip_size, self.args.aug_num)
self.metrics_accumulator = MetricsAccumulator()
self.hf_loss = HighFrequencyLoss()
def unscale_timestep(self, t):
unscaled_timestep = (t * (self.diffusion.num_timesteps / 1000)).long()
return unscaled_timestep
def clip_loss(self, x_in, text_embed):
clip_loss = torch.tensor(0)
if self.mask is not None:
masked_input = x_in * self.mask
else:
masked_input = x_in
augmented_input = self.image_augmentations(masked_input).add(1).div(2) # shape: [N,C,H,W], range: [0,1]
clip_in = self.clip_normalize(augmented_input)
# pdb.set_trace()
image_embeds = self.clip_model.encode_image(clip_in).float()
dists = d_clip_loss(image_embeds, text_embed)
# We want to sum over the averages
for i in range(self.args.batch_size):
# We want to average at the "augmentations level"
clip_loss = clip_loss + dists[i :: self.args.batch_size].mean()
return clip_loss
def unaugmented_clip_distance(self, x, text_embed):
x = F.resize(x, [self.clip_size, self.clip_size])
image_embeds = self.clip_model.encode_image(x).float()
dists = d_clip_loss(image_embeds, text_embed)
return dists.item()
def model_fn(self, x,t,y=None):
return self.model(x, t, y if self.args.class_cond else None)
def edit_image_by_prompt(self):
if self.args.image_guide:
img_guidance = Image.open(self.args.prompt).convert('RGB')
img_guidance = img_guidance.resize((224,224), Image.LANCZOS) # type: ignore
img_guidance = self.clip_normalize(self.to_tensor(img_guidance).unsqueeze(0)).to(self.device)
text_embed = self.clip_model.encode_image(img_guidance).float()
else:
text_embed = self.clip_model.encode_text(
clip.tokenize(self.args.prompt).to(self.device)
).float()
self.image_size = (self.model_config["image_size"], self.model_config["image_size"])
self.init_image_pil = Image.open(self.args.init_image).convert("RGB")
self.init_image_pil = self.init_image_pil.resize(self.image_size, Image.LANCZOS) # type: ignore
self.init_image = (
TF.to_tensor(self.init_image_pil).to(self.device).unsqueeze(0).mul(2).sub(1)
)
self.init_image_pil_2 = Image.open(self.args.init_image_2).convert("RGB")
if self.args.rotate_obj:
# angle = random.randint(-45,45)
angle = self.args.angle
self.init_image_pil_2 = self.init_image_pil_2.rotate(angle)
self.init_image_pil_2 = self.init_image_pil_2.resize(self.image_size, Image.LANCZOS) # type: ignore
self.init_image_2 = (
TF.to_tensor(self.init_image_pil_2).to(self.device).unsqueeze(0).mul(2).sub(1)
)
'''
# Init with the inpainting image
self.init_image_pil_ = Image.open('output/ImageNet-S_val/bad_case_RN50/ILSVRC2012_val_00013212/ranked/08480_output_i_0_b_0.png').convert("RGB")
self.init_image_pil_ = self.init_image_pil_.resize(self.image_size, Image.LANCZOS) # type: ignore
self.init_image_ = (
TF.to_tensor(self.init_image_pil_).to(self.device).unsqueeze(0).mul(2).sub(1)
)
'''
if self.args.export_assets:
img_path = self.assets_path / Path(self.args.output_file)
self.init_image_pil.save(img_path, quality=100)
self.mask = torch.ones_like(self.init_image, device=self.device)
self.mask_pil = None
if self.args.mask is not None:
self.mask_pil = Image.open(self.args.mask).convert("RGB")
if self.args.rotate_obj:
self.mask_pil = self.mask_pil.rotate(angle)
if self.mask_pil.size != self.image_size:
self.mask_pil = self.mask_pil.resize(self.image_size, Image.NEAREST) # type: ignore
if self.args.random_position:
bbox = find_bbox(np.array(self.mask_pil))
print(bbox)
image_mask_pil_binarized = ((np.array(self.mask_pil) > 0.5) * 255).astype(np.uint8)
# image_mask_pil_binarized = cv2.dilate(image_mask_pil_binarized, np.ones((50,50), np.uint8), iterations=1)
if self.args.invert_mask:
image_mask_pil_binarized = 255 - image_mask_pil_binarized
self.mask_pil = TF.to_pil_image(image_mask_pil_binarized)
self.mask = TF.to_tensor(Image.fromarray(image_mask_pil_binarized))
self.mask = self.mask[0, ...].unsqueeze(0).unsqueeze(0).to(self.device)
# self.mask[:] = 1
if self.args.random_position:
# print(self.init_image_2.shape, self.init_image_2.max(), self.init_image_2.min())
# print(self.mask.shape, self.mask.max(), self.mask.min())
# cv2.imwrite('tmp/init_before.jpg', np.transpose(((self.init_image_2+1)/2*255).cpu().numpy()[0], (1,2,0))[:,:,::-1])
# cv2.imwrite('tmp/mask_before.jpg', (self.mask*255).cpu().numpy()[0][0])
self.init_image_2, self.mask = change_place(self.init_image_2, self.mask, bbox, self.args.invert_mask)
# cv2.imwrite('tmp/init_after.jpg', np.transpose(((self.init_image_2+1)/2*255).cpu().numpy()[0], (1,2,0))[:,:,::-1])
# cv2.imwrite('tmp/mask_after.jpg', (self.mask*255).cpu().numpy()[0][0])
if self.args.export_assets:
mask_path = self.assets_path / Path(
self.args.output_file.replace(".png", "_mask.png")
)
self.mask_pil.save(mask_path, quality=100)
def class_guided(x, y, t):
assert y is not None
with torch.enable_grad():
x_in = x.detach().requires_grad_(True)
# logits = self.classifier(x_in, t)
logits = self.classifier(x_in)
log_probs = torch.nn.functional.log_softmax(logits, dim=-1)
selected = log_probs[range(len(logits)), y.view(-1)]
loss = selected.sum()
return -torch.autograd.grad(loss, x_in)[0] * self.args.classifier_scale
def cond_fn(x, t, y=None):
if self.args.prompt == "":
return torch.zeros_like(x)
# pdb.set_trace()
with torch.enable_grad():
x = x.detach().requires_grad_()
t_unscale = self.unscale_timestep(t)
'''
out = self.diffusion.p_mean_variance(
self.model, x, t, clip_denoised=False, model_kwargs={"y": y}
)
'''
out = self.diffusion.p_mean_variance(
self.model, x, t_unscale, clip_denoised=False, model_kwargs={"y": None}
)
fac = self.diffusion.sqrt_one_minus_alphas_cumprod[t_unscale[0].item()]
# x_in = out["pred_xstart"] * fac + x * (1 - fac)
x_in = out["pred_xstart"] # Revised by XX, 2022.07.14
loss = torch.tensor(0)
if self.args.classifier_scale != 0 and y is not None:
# gradient_class_guided = class_guided(x, y, t)
gradient_class_guided = class_guided(x_in, y, t)
if self.args.background_complex != 0:
if self.args.hard:
loss = loss - self.args.background_complex*self.hf_loss((x_in+1.)/2.)
else:
loss = loss + self.args.background_complex*self.hf_loss((x_in+1.)/2.)
if self.args.clip_guidance_lambda != 0:
clip_loss = self.clip_loss(x_in, text_embed) * self.args.clip_guidance_lambda
loss = loss + clip_loss
self.metrics_accumulator.update_metric("clip_loss", clip_loss.item())
if self.args.range_lambda != 0:
r_loss = range_loss(out["pred_xstart"]).sum() * self.args.range_lambda
loss = loss + r_loss
self.metrics_accumulator.update_metric("range_loss", r_loss.item())
if self.args.background_preservation_loss:
x_in = out["pred_xstart"] * fac + x * (1 - fac)
if self.mask is not None:
# masked_background = x_in * (1 - self.mask)
masked_background = x_in * self.mask # 2022.07.19
else:
masked_background = x_in
if self.args.lpips_sim_lambda:
'''
loss = (
loss
+ self.lpips_model(masked_background, self.init_image).sum()
* self.args.lpips_sim_lambda
)
'''
# 2022.07.19
loss = (
loss
+ self.lpips_model(masked_background, self.init_image*self.mask).sum()
* self.args.lpips_sim_lambda
)
if self.args.l2_sim_lambda:
'''
loss = (
loss
+ mse_loss(masked_background, self.init_image) * self.args.l2_sim_lambda
)
'''
# 2022.07.19
loss = (
loss
+ mse_loss(masked_background, self.init_image*self.mask) * self.args.l2_sim_lambda
)
if self.args.classifier_scale != 0 and y is not None:
return -torch.autograd.grad(loss, x)[0] + gradient_class_guided
else:
return -torch.autograd.grad(loss, x)[0]
@torch.no_grad()
def postprocess_fn(out, t):
if self.args.coarse_to_fine:
if t > 50:
kernel = 51
elif t > 35:
kernel = 31
else:
kernel = 0
if kernel > 0:
max_pool = torch.nn.MaxPool2d(kernel_size=kernel, stride=1, padding=int((kernel-1)/2))
self.mask_d = 1 - self.mask
self.mask_d = max_pool(self.mask_d)
self.mask_d = 1 - self.mask_d
else:
self.mask_d = self.mask
else:
self.mask_d = self.mask
if self.mask is not None:
background_stage_t = self.diffusion.q_sample(self.init_image_2, t[0])
background_stage_t = torch.tile(
background_stage_t, dims=(self.args.batch_size, 1, 1, 1)
)
out["sample"] = out["sample"] * self.mask_d + background_stage_t * (1 - self.mask_d)
return out
save_image_interval = self.diffusion.num_timesteps // 5
for iteration_number in range(self.args.iterations_num):
print(f"Start iterations {iteration_number}")
sample_func = (
self.diffusion.ddim_sample_loop_progressive
if self.args.ddim
else self.diffusion.p_sample_loop_progressive
)
samples = sample_func(
self.model_fn,
(
self.args.batch_size,
3,
self.model_config["image_size"],
self.model_config["image_size"],
),
clip_denoised=False,
# model_kwargs={}
# if self.args.model_output_size == 256
# else {
# "y": torch.zeros([self.args.batch_size], device=self.device, dtype=torch.long)
# },
model_kwargs={}
if self.args.classifier_scale == 0
else {"y": self.args.y*torch.ones([self.args.batch_size], device=self.device, dtype=torch.long)},
cond_fn=cond_fn,
device=self.device,
progress=True,
skip_timesteps=self.args.skip_timesteps,
init_image=self.init_image,
# init_image=self.init_image_,
postprocess_fn=None if self.args.local_clip_guided_diffusion else postprocess_fn,
randomize_class=True if self.args.classifier_scale == 0 else False,
)
intermediate_samples = [[] for i in range(self.args.batch_size)]
total_steps = self.diffusion.num_timesteps - self.args.skip_timesteps - 1
for j, sample in enumerate(samples):
should_save_image = j % save_image_interval == 0 or j == total_steps
if should_save_image or self.args.save_video:
self.metrics_accumulator.print_average_metric()
for b in range(self.args.batch_size):
pred_image = sample["pred_xstart"][b]
visualization_path = Path(
os.path.join(self.args.output_path, self.args.output_file)
)
visualization_path = visualization_path.with_stem(
f"{visualization_path.stem}_i_{iteration_number}_b_{b}"
)
if (
self.mask is not None
and self.args.enforce_background
and j == total_steps
and not self.args.local_clip_guided_diffusion
):
pred_image = (
self.init_image_2[0] * (1 - self.mask[0]) + pred_image * self.mask[0]
)
'''
if j == total_steps:
pdb.set_trace()
pred_image = (
self.init_image_2[0] * (1 - self.mask[0]) + pred_image * self.mask[0]
)
'''
pred_image = pred_image.add(1).div(2).clamp(0, 1)
pred_image_pil = TF.to_pil_image(pred_image)
masked_pred_image = self.mask * pred_image.unsqueeze(0)
final_distance = self.unaugmented_clip_distance(
masked_pred_image, text_embed
)
formatted_distance = f"{final_distance:.4f}"
if self.args.export_assets:
pred_path = self.assets_path / visualization_path.name
pred_image_pil.save(pred_path, quality=100)
if j == total_steps:
path_friendly_distance = formatted_distance.replace(".", "")
ranked_pred_path = self.ranked_results_path / (
path_friendly_distance + "_" + visualization_path.name
)
pred_image_pil.save(ranked_pred_path, quality=100)
intermediate_samples[b].append(pred_image_pil)
if should_save_image:
show_editied_masked_image(
title=self.args.prompt,
source_image=self.init_image_pil,
edited_image=pred_image_pil,
mask=self.mask_pil,
path=visualization_path,
distance=formatted_distance,
)
if self.args.save_video:
for b in range(self.args.batch_size):
video_name = self.args.output_file.replace(
".png", f"_i_{iteration_number}_b_{b}.avi"
)
video_path = os.path.join(self.args.output_path, video_name)
save_video(intermediate_samples[b], video_path)
visualize_size = (256,256)
img_ori = cv2.imread(self.args.init_image_2)
img_ori = cv2.resize(img_ori, visualize_size)
mask = cv2.imread(self.args.mask)
mask = cv2.resize(mask, visualize_size)
imgs = [img_ori, mask]
for ii, img_name in enumerate(os.listdir(os.path.join(self.args.output_path, 'ranked'))):
img_path = os.path.join(self.args.output_path, 'ranked', img_name)
img = cv2.imread(img_path)
img = cv2.resize(img, visualize_size)
imgs.append(img)
if ii >= 7:
break
img_whole = cv2.hconcat(imgs[2:])
'''
img_name = self.args.output_path.split('/')[-2]+'/'
if self.args.coarse_to_fine:
if self.args.clip_guidance_lambda == 0:
prompt = 'coarse_to_fine_no_clip'
else:
prompt = 'coarse_to_fine'
elif self.args.image_guide:
prompt = 'image_guide'
elif self.args.clip_guidance_lambda == 0:
prompt = 'no_clip_guide'
else:
prompt = 'text_guide'
'''
cv2.imwrite(os.path.join(self.args.final_save_root, 'edited.png'), img_whole, [int(cv2.IMWRITE_PNG_COMPRESSION), 0])
def reconstruct_image(self):
init = Image.open(self.args.init_image).convert("RGB")
init = init.resize(
self.image_size, # type: ignore
Image.LANCZOS,
)
init = TF.to_tensor(init).to(self.device).unsqueeze(0).mul(2).sub(1)
samples = self.diffusion.p_sample_loop_progressive(
self.model,
(1, 3, self.model_config["image_size"], self.model_config["image_size"],),
clip_denoised=False,
model_kwargs={}
if self.args.model_output_size == 256
else {"y": torch.zeros([self.args.batch_size], device=self.device, dtype=torch.long)},
cond_fn=None,
progress=True,
skip_timesteps=self.args.skip_timesteps,
init_image=init,
randomize_class=True,
)
save_image_interval = self.diffusion.num_timesteps // 5
max_iterations = self.diffusion.num_timesteps - self.args.skip_timesteps - 1
for j, sample in enumerate(samples):
if j % save_image_interval == 0 or j == max_iterations:
print()
filename = os.path.join(self.args.output_path, self.args.output_file)
TF.to_pil_image(sample["pred_xstart"][0].add(1).div(2).clamp(0, 1)).save(filename)
|