File size: 23,897 Bytes
ec0fdfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
import os
from pathlib import Path
from optimization.constants import ASSETS_DIR_NAME, RANKED_RESULTS_DIR

from utils.metrics_accumulator import MetricsAccumulator
from utils.video import save_video
from utils.fft_pytorch import HighFrequencyLoss

from numpy import random
from optimization.augmentations import ImageAugmentations

from PIL import Image
import torch
import torchvision
from torchvision import transforms
import torchvision.transforms.functional as F
from torchvision.transforms import functional as TF
from torch.nn.functional import mse_loss
from optimization.losses import range_loss, d_clip_loss
import lpips
import numpy as np

from CLIP import clip
from guided_diffusion.guided_diffusion.script_util import (
    create_model_and_diffusion,
    model_and_diffusion_defaults,
    create_classifier,
    classifier_defaults,
)
from utils.visualization import show_tensor_image, show_editied_masked_image
from utils.change_place import change_place, find_bbox

import pdb
import cv2

def create_classifier_ours():

    model = torchvision.models.resnet50()
    ckpt = torch.load('checkpoints/DRA_resnet50.pth')['model_state_dict']
    model.load_state_dict({k.replace('module.','').replace('last_linear','fc'):v for k,v in ckpt.items()})
    model = torch.nn.Sequential(*[torch.nn.Upsample(size=(256,256)), model])
    return model

class ImageEditor:
    def __init__(self, args) -> None:
        self.args = args
        os.makedirs(self.args.output_path, exist_ok=True)

        self.ranked_results_path = Path(os.path.join(self.args.output_path, RANKED_RESULTS_DIR))
        os.makedirs(self.ranked_results_path, exist_ok=True)

        if self.args.export_assets:
            self.assets_path = Path(os.path.join(self.args.output_path, ASSETS_DIR_NAME))
            os.makedirs(self.assets_path, exist_ok=True)
        if self.args.seed is not None:
            torch.manual_seed(self.args.seed)
            np.random.seed(self.args.seed)
            random.seed(self.args.seed)

        self.model_config = model_and_diffusion_defaults()
        self.model_config.update(
            {
                "attention_resolutions": "32, 16, 8",
                "class_cond": self.args.model_output_size == 512,
                "diffusion_steps": 1000,
                "rescale_timesteps": True,
                "timestep_respacing": self.args.timestep_respacing,
                "image_size": self.args.model_output_size,
                "learn_sigma": True,
                "noise_schedule": "linear",
                "num_channels": 256,
                "num_head_channels": 64,
                "num_res_blocks": 2,
                "resblock_updown": True,
                "use_fp16": True,
                "use_scale_shift_norm": True,
            }
        )

        self.classifier_config = classifier_defaults()
        self.classifier_config.update(
            {
                "image_size": self.args.model_output_size,
            }
        )

        # Load models
        self.device = torch.device(
            f"cuda:{self.args.gpu_id}" if torch.cuda.is_available() else "cpu"
        )
        print("Using device:", self.device)

        self.model, self.diffusion = create_model_and_diffusion(**self.model_config)
        self.model.load_state_dict(
            torch.load(
                "checkpoints/256x256_diffusion_uncond.pt"
                if self.args.model_output_size == 256
                else "checkpoints/512x512_diffusion.pt",
                map_location="cpu",
            )
        )
        # self.model.requires_grad_(False).eval().to(self.device)
        self.model.eval().to(self.device)
        for name, param in self.model.named_parameters():
            if "qkv" in name or "norm" in name or "proj" in name:
                param.requires_grad_()
        if self.model_config["use_fp16"]:
            self.model.convert_to_fp16()

        self.classifier = create_classifier(**self.classifier_config)
        self.classifier.load_state_dict(
            torch.load("checkpoints/256x256_classifier.pt", map_location="cpu")
        )
        # self.classifier.requires_grad_(False).eval().to(self.device)


        # self.classifier = create_classifier_ours()

        self.classifier.eval().to(self.device)
        if self.classifier_config["classifier_use_fp16"]:
            self.classifier.convert_to_fp16()

        self.clip_model = (
            clip.load("ViT-B/16", device=self.device, jit=False)[0].eval().requires_grad_(False)
        )
        self.clip_size = self.clip_model.visual.input_resolution
        self.clip_normalize = transforms.Normalize(
            mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]
        )
        self.to_tensor = transforms.ToTensor()
        self.lpips_model = lpips.LPIPS(net="vgg").to(self.device)

        self.image_augmentations = ImageAugmentations(self.clip_size, self.args.aug_num)
        self.metrics_accumulator = MetricsAccumulator()

        self.hf_loss = HighFrequencyLoss()


    def unscale_timestep(self, t):
        unscaled_timestep = (t * (self.diffusion.num_timesteps / 1000)).long()

        return unscaled_timestep


    def clip_loss(self, x_in, text_embed):
        clip_loss = torch.tensor(0)

        if self.mask is not None:
            masked_input = x_in * self.mask
        else:
            masked_input = x_in
        augmented_input = self.image_augmentations(masked_input).add(1).div(2) # shape: [N,C,H,W], range: [0,1]
        clip_in = self.clip_normalize(augmented_input)
        # pdb.set_trace()
        image_embeds = self.clip_model.encode_image(clip_in).float()
        dists = d_clip_loss(image_embeds, text_embed)

        # We want to sum over the averages
        for i in range(self.args.batch_size):
            # We want to average at the "augmentations level"
            clip_loss = clip_loss + dists[i :: self.args.batch_size].mean()

        return clip_loss

    def unaugmented_clip_distance(self, x, text_embed):
        x = F.resize(x, [self.clip_size, self.clip_size])
        image_embeds = self.clip_model.encode_image(x).float()
        dists = d_clip_loss(image_embeds, text_embed)

        return dists.item()

    def model_fn(self, x,t,y=None):
        return self.model(x, t, y if self.args.class_cond else None)

    def edit_image_by_prompt(self):
        if self.args.image_guide:
            img_guidance = Image.open(self.args.prompt).convert('RGB')
            img_guidance = img_guidance.resize((224,224), Image.LANCZOS)  # type: ignore
            img_guidance = self.clip_normalize(self.to_tensor(img_guidance).unsqueeze(0)).to(self.device)
            text_embed = self.clip_model.encode_image(img_guidance).float()

        else:
            text_embed = self.clip_model.encode_text(
                clip.tokenize(self.args.prompt).to(self.device)
            ).float()

        self.image_size = (self.model_config["image_size"], self.model_config["image_size"])
        self.init_image_pil = Image.open(self.args.init_image).convert("RGB")
        self.init_image_pil = self.init_image_pil.resize(self.image_size, Image.LANCZOS)  # type: ignore
        self.init_image = (
            TF.to_tensor(self.init_image_pil).to(self.device).unsqueeze(0).mul(2).sub(1)
        )
        self.init_image_pil_2 = Image.open(self.args.init_image_2).convert("RGB")
        if self.args.rotate_obj:
            # angle = random.randint(-45,45)
            angle = self.args.angle
            self.init_image_pil_2 = self.init_image_pil_2.rotate(angle)
        self.init_image_pil_2 = self.init_image_pil_2.resize(self.image_size, Image.LANCZOS)  # type: ignore
        self.init_image_2 = (
            TF.to_tensor(self.init_image_pil_2).to(self.device).unsqueeze(0).mul(2).sub(1)
        )

        '''
        # Init with the inpainting image
        self.init_image_pil_ = Image.open('output/ImageNet-S_val/bad_case_RN50/ILSVRC2012_val_00013212/ranked/08480_output_i_0_b_0.png').convert("RGB")
        self.init_image_pil_ = self.init_image_pil_.resize(self.image_size, Image.LANCZOS)  # type: ignore
        self.init_image_ = (
            TF.to_tensor(self.init_image_pil_).to(self.device).unsqueeze(0).mul(2).sub(1)
        )
        '''

        if self.args.export_assets:
            img_path = self.assets_path / Path(self.args.output_file)
            self.init_image_pil.save(img_path, quality=100)

        self.mask = torch.ones_like(self.init_image, device=self.device)
        self.mask_pil = None
        if self.args.mask is not None:
            self.mask_pil = Image.open(self.args.mask).convert("RGB")
            if self.args.rotate_obj:
                self.mask_pil = self.mask_pil.rotate(angle)
            if self.mask_pil.size != self.image_size:
                self.mask_pil = self.mask_pil.resize(self.image_size, Image.NEAREST)  # type: ignore
            if self.args.random_position:
                bbox = find_bbox(np.array(self.mask_pil))
                print(bbox)

            image_mask_pil_binarized = ((np.array(self.mask_pil) > 0.5) * 255).astype(np.uint8)
            # image_mask_pil_binarized = cv2.dilate(image_mask_pil_binarized, np.ones((50,50), np.uint8), iterations=1)
            if self.args.invert_mask:
                image_mask_pil_binarized = 255 - image_mask_pil_binarized
                self.mask_pil = TF.to_pil_image(image_mask_pil_binarized)
            self.mask = TF.to_tensor(Image.fromarray(image_mask_pil_binarized))
            self.mask = self.mask[0, ...].unsqueeze(0).unsqueeze(0).to(self.device)
            # self.mask[:] = 1

            if self.args.random_position:
                # print(self.init_image_2.shape, self.init_image_2.max(), self.init_image_2.min())
                # print(self.mask.shape, self.mask.max(), self.mask.min())
                # cv2.imwrite('tmp/init_before.jpg', np.transpose(((self.init_image_2+1)/2*255).cpu().numpy()[0], (1,2,0))[:,:,::-1])
                # cv2.imwrite('tmp/mask_before.jpg', (self.mask*255).cpu().numpy()[0][0])
                self.init_image_2, self.mask = change_place(self.init_image_2, self.mask, bbox, self.args.invert_mask)
                # cv2.imwrite('tmp/init_after.jpg', np.transpose(((self.init_image_2+1)/2*255).cpu().numpy()[0], (1,2,0))[:,:,::-1])
                # cv2.imwrite('tmp/mask_after.jpg', (self.mask*255).cpu().numpy()[0][0])

            if self.args.export_assets:
                mask_path = self.assets_path / Path(
                    self.args.output_file.replace(".png", "_mask.png")
                )
                self.mask_pil.save(mask_path, quality=100)

        def class_guided(x, y, t):
            assert y is not None
            with torch.enable_grad():
                x_in = x.detach().requires_grad_(True)
                # logits = self.classifier(x_in, t)
                logits = self.classifier(x_in)
                log_probs = torch.nn.functional.log_softmax(logits, dim=-1)
                selected = log_probs[range(len(logits)), y.view(-1)]
                loss = selected.sum()

                return -torch.autograd.grad(loss, x_in)[0] * self.args.classifier_scale

        def cond_fn(x, t, y=None):
            if self.args.prompt == "":
                return torch.zeros_like(x)
            # pdb.set_trace()
            with torch.enable_grad():
                x = x.detach().requires_grad_()

                t_unscale = self.unscale_timestep(t)

                '''
                out = self.diffusion.p_mean_variance(
                    self.model, x, t, clip_denoised=False, model_kwargs={"y": y}
                )
                '''
                out = self.diffusion.p_mean_variance(
                    self.model, x, t_unscale, clip_denoised=False, model_kwargs={"y": None}
                )

                fac = self.diffusion.sqrt_one_minus_alphas_cumprod[t_unscale[0].item()]
                # x_in = out["pred_xstart"] * fac + x * (1 - fac)
                x_in = out["pred_xstart"] # Revised by XX, 2022.07.14

                loss = torch.tensor(0)
                if self.args.classifier_scale != 0 and y is not None:
                    # gradient_class_guided = class_guided(x, y, t)
                    gradient_class_guided = class_guided(x_in, y, t)

                if self.args.background_complex != 0:
                    if self.args.hard:
                        loss = loss - self.args.background_complex*self.hf_loss((x_in+1.)/2.)
                    else:
                        loss = loss + self.args.background_complex*self.hf_loss((x_in+1.)/2.)

                if self.args.clip_guidance_lambda != 0:
                    clip_loss = self.clip_loss(x_in, text_embed) * self.args.clip_guidance_lambda
                    loss = loss + clip_loss
                    self.metrics_accumulator.update_metric("clip_loss", clip_loss.item())

                if self.args.range_lambda != 0:
                    r_loss = range_loss(out["pred_xstart"]).sum() * self.args.range_lambda
                    loss = loss + r_loss
                    self.metrics_accumulator.update_metric("range_loss", r_loss.item())

                if self.args.background_preservation_loss:
                    x_in = out["pred_xstart"] * fac + x * (1 - fac)
                    if self.mask is not None:
                        # masked_background = x_in * (1 - self.mask)
                        masked_background = x_in * self.mask # 2022.07.19
                    else:
                        masked_background = x_in

                    if self.args.lpips_sim_lambda:
                        '''
                        loss = (
                            loss
                            + self.lpips_model(masked_background, self.init_image).sum()
                            * self.args.lpips_sim_lambda
                        )
                        '''
                        # 2022.07.19
                        loss = (
                            loss
                            + self.lpips_model(masked_background, self.init_image*self.mask).sum()
                            * self.args.lpips_sim_lambda
                        )
                    if self.args.l2_sim_lambda:
                        '''
                        loss = (
                            loss
                            + mse_loss(masked_background, self.init_image) * self.args.l2_sim_lambda
                        )
                        '''
                        # 2022.07.19
                        loss = (
                            loss
                            + mse_loss(masked_background, self.init_image*self.mask) * self.args.l2_sim_lambda
                        )


                if self.args.classifier_scale != 0 and y is not None:
                    return -torch.autograd.grad(loss, x)[0] + gradient_class_guided
                else:
                    return -torch.autograd.grad(loss, x)[0]

        @torch.no_grad()
        def postprocess_fn(out, t):
            if self.args.coarse_to_fine:
                if t > 50:
                    kernel = 51
                elif t > 35:
                    kernel = 31
                else:
                    kernel = 0
                if kernel > 0:
                    max_pool = torch.nn.MaxPool2d(kernel_size=kernel, stride=1, padding=int((kernel-1)/2))
                    self.mask_d = 1 - self.mask
                    self.mask_d = max_pool(self.mask_d)
                    self.mask_d = 1 - self.mask_d
                else:
                    self.mask_d = self.mask
            else:
                self.mask_d = self.mask

            if self.mask is not None:
                background_stage_t = self.diffusion.q_sample(self.init_image_2, t[0])
                background_stage_t = torch.tile(
                    background_stage_t, dims=(self.args.batch_size, 1, 1, 1)
                )
                out["sample"] = out["sample"] * self.mask_d + background_stage_t * (1 - self.mask_d)

            return out

        save_image_interval = self.diffusion.num_timesteps // 5
        for iteration_number in range(self.args.iterations_num):
            print(f"Start iterations {iteration_number}")

            sample_func = (
                self.diffusion.ddim_sample_loop_progressive
                if self.args.ddim
                else self.diffusion.p_sample_loop_progressive
            )
            samples = sample_func(
                self.model_fn,
                (
                    self.args.batch_size,
                    3,
                    self.model_config["image_size"],
                    self.model_config["image_size"],
                ),
                clip_denoised=False,
                # model_kwargs={}
                # if self.args.model_output_size == 256
                # else {
                #     "y": torch.zeros([self.args.batch_size], device=self.device, dtype=torch.long)
                # },
                model_kwargs={}
                if self.args.classifier_scale == 0
                else {"y": self.args.y*torch.ones([self.args.batch_size], device=self.device, dtype=torch.long)},
                cond_fn=cond_fn,
                device=self.device,
                progress=True,
                skip_timesteps=self.args.skip_timesteps,
                init_image=self.init_image,
                # init_image=self.init_image_,
                postprocess_fn=None if self.args.local_clip_guided_diffusion else postprocess_fn,
                randomize_class=True if self.args.classifier_scale == 0 else False,
            )

            intermediate_samples = [[] for i in range(self.args.batch_size)]
            total_steps = self.diffusion.num_timesteps - self.args.skip_timesteps - 1
            for j, sample in enumerate(samples):
                should_save_image = j % save_image_interval == 0 or j == total_steps
                if should_save_image or self.args.save_video:
                    self.metrics_accumulator.print_average_metric()

                    for b in range(self.args.batch_size):
                        pred_image = sample["pred_xstart"][b]
                        visualization_path = Path(
                            os.path.join(self.args.output_path, self.args.output_file)
                        )
                        visualization_path = visualization_path.with_stem(
                            f"{visualization_path.stem}_i_{iteration_number}_b_{b}"
                        )
                        if (
                            self.mask is not None
                            and self.args.enforce_background
                            and j == total_steps
                            and not self.args.local_clip_guided_diffusion
                        ):
                            pred_image = (
                                self.init_image_2[0] * (1 - self.mask[0]) + pred_image * self.mask[0]
                            )
                        '''
                        if j == total_steps:
                            pdb.set_trace()
                        pred_image = (
                                self.init_image_2[0] * (1 - self.mask[0]) + pred_image * self.mask[0]
                            )
                        '''
                        pred_image = pred_image.add(1).div(2).clamp(0, 1)
                        pred_image_pil = TF.to_pil_image(pred_image)
                        masked_pred_image = self.mask * pred_image.unsqueeze(0)
                        final_distance = self.unaugmented_clip_distance(
                            masked_pred_image, text_embed
                        )
                        formatted_distance = f"{final_distance:.4f}"

                        if self.args.export_assets:
                            pred_path = self.assets_path / visualization_path.name
                            pred_image_pil.save(pred_path, quality=100)

                        if j == total_steps:
                            path_friendly_distance = formatted_distance.replace(".", "")
                            ranked_pred_path = self.ranked_results_path / (
                                path_friendly_distance + "_" + visualization_path.name
                            )
                            pred_image_pil.save(ranked_pred_path, quality=100)

                        intermediate_samples[b].append(pred_image_pil)
                        if should_save_image:
                            show_editied_masked_image(
                                title=self.args.prompt,
                                source_image=self.init_image_pil,
                                edited_image=pred_image_pil,
                                mask=self.mask_pil,
                                path=visualization_path,
                                distance=formatted_distance,
                            )

            if self.args.save_video:
                for b in range(self.args.batch_size):
                    video_name = self.args.output_file.replace(
                        ".png", f"_i_{iteration_number}_b_{b}.avi"
                    )
                    video_path = os.path.join(self.args.output_path, video_name)
                    save_video(intermediate_samples[b], video_path)

        visualize_size = (256,256)
        img_ori = cv2.imread(self.args.init_image_2) 
        img_ori = cv2.resize(img_ori, visualize_size)
        mask = cv2.imread(self.args.mask)
        mask = cv2.resize(mask, visualize_size)
        imgs = [img_ori, mask]
        for ii, img_name in enumerate(os.listdir(os.path.join(self.args.output_path, 'ranked'))):
            img_path = os.path.join(self.args.output_path, 'ranked', img_name)
            img = cv2.imread(img_path)
            img = cv2.resize(img, visualize_size)
            imgs.append(img)
            if ii >= 7:
                break

        img_whole = cv2.hconcat(imgs[2:])
        '''
        img_name = self.args.output_path.split('/')[-2]+'/'
        if self.args.coarse_to_fine:
            if self.args.clip_guidance_lambda == 0:
                prompt = 'coarse_to_fine_no_clip'
            else:
                prompt = 'coarse_to_fine'
        elif self.args.image_guide:
            prompt = 'image_guide'
        elif self.args.clip_guidance_lambda == 0:
            prompt = 'no_clip_guide'
        else:
            prompt = 'text_guide'
        '''

        cv2.imwrite(os.path.join(self.args.final_save_root, 'edited.png'), img_whole, [int(cv2.IMWRITE_PNG_COMPRESSION), 0])


    def reconstruct_image(self):
        init = Image.open(self.args.init_image).convert("RGB")
        init = init.resize(
            self.image_size,  # type: ignore
            Image.LANCZOS,
        )
        init = TF.to_tensor(init).to(self.device).unsqueeze(0).mul(2).sub(1)

        samples = self.diffusion.p_sample_loop_progressive(
            self.model,
            (1, 3, self.model_config["image_size"], self.model_config["image_size"],),
            clip_denoised=False,
            model_kwargs={}
            if self.args.model_output_size == 256
            else {"y": torch.zeros([self.args.batch_size], device=self.device, dtype=torch.long)},
            cond_fn=None,
            progress=True,
            skip_timesteps=self.args.skip_timesteps,
            init_image=init,
            randomize_class=True,
        )
        save_image_interval = self.diffusion.num_timesteps // 5
        max_iterations = self.diffusion.num_timesteps - self.args.skip_timesteps - 1

        for j, sample in enumerate(samples):
            if j % save_image_interval == 0 or j == max_iterations:
                print()
                filename = os.path.join(self.args.output_path, self.args.output_file)
                TF.to_pil_image(sample["pred_xstart"][0].add(1).div(2).clamp(0, 1)).save(filename)