Spaces:
Sleeping
Sleeping
File size: 9,926 Bytes
835894d da85b9a 835894d a124069 835894d 2a82b5d 835894d a124069 835894d ff3029d 835894d ff3029d 835894d 2a82b5d 835894d 2a82b5d 835894d 25945f9 3fb40cc 1c0fdd6 835894d 2f9b167 835894d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import torch
import numpy as np
import torch.nn as nn
import torchvision.transforms as transforms
import matplotlib
import matplotlib.pyplot as plt
from PIL import Image
import cv2
import gradio as gr
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
from data_transforms import normal_transforms, no_shift_transforms, ig_transforms, modify_transforms
from utils import overlay_heatmap, viz_map, show_image, deprocess, get_ssl_model, fig2img
from methods import occlusion, pairwise_occlusion
from methods import create_mixed_images, averaged_transforms, sailency, smooth_grad
from methods import get_gradcam, get_interactioncam
matplotlib.use('Agg')
def load_model(model_name):
global network, ssl_model, denorm
if model_name == "simclrv2 (1X)":
variant = '1x'
network = 'simclrv2'
denorm = False
elif model_name == "simclrv2 (2X)":
variant = '2x'
network = 'simclrv2'
denorm = False
elif model_name == "Barlow Twins":
network = 'barlow_twins'
variant = None
denorm = True
ssl_model = get_ssl_model(network, variant)
if network != 'simclrv2':
global normal_transforms, no_shift_transforms, ig_transforms
normal_transforms, no_shift_transforms, ig_transforms = modify_transforms(normal_transforms, no_shift_transforms, ig_transforms)
return "Loaded Model Successfully"
def load_or_augment_images(img1_input, img2_input, use_aug):
global img_main, img1, img2
img_main = img1_input.convert('RGB')
if use_aug:
img1 = normal_transforms['pure'](img_main).unsqueeze(0).to(device)
img2 = normal_transforms['aug'](img_main).unsqueeze(0).to(device)
else:
img1 = normal_transforms['pure'](img_main).unsqueeze(0).to(device)
img2 = img2_input.convert('RGB')
img2 = normal_transforms['pure'](img2).unsqueeze(0).to(device)
similarity = "Similarity: {:.3f}".format(nn.CosineSimilarity(dim=-1)(ssl_model(img1), ssl_model(img2)).item())
fig, axs = plt.subplots(1, 2, figsize=(10,10))
np.vectorize(lambda ax:ax.axis('off'))(axs)
axs[0].imshow(show_image(img1, denormalize = denorm))
axs[1].imshow(show_image(img2, denormalize = denorm))
plt.subplots_adjust(wspace=0.1, hspace = 0)
pil_output = fig2img(fig)
return pil_output, similarity
def run_occlusion(w_size, stride):
heatmap1, heatmap2 = occlusion(img1, img2, ssl_model, w_size = 64, stride = 8, batch_size = 32)
heatmap1_po, heatmap2_po = pairwise_occlusion(img1, img2, ssl_model, batch_size = 32, erase_scale = (0.1, 0.3), erase_ratio = (1, 1.5), num_erases = 100)
added_image1 = overlay_heatmap(img1, heatmap1, denormalize = denorm)
added_image2 = overlay_heatmap(img2, heatmap2, denormalize = denorm)
fig, axs = plt.subplots(2, 3, figsize=(20,10))
np.vectorize(lambda ax:ax.axis('off'))(axs)
axs[0, 0].imshow(show_image(img1, denormalize = denorm))
axs[0, 1].imshow(added_image1)
axs[0, 1].set_title("Conditional Occlusion")
axs[0, 2].imshow((deprocess(img1, denormalize = denorm) * heatmap1_po[:,:,None]).astype('uint8'))
axs[0, 2].set_title("Pairwise Occlusion")
axs[1, 0].imshow(show_image(img2, denormalize = denorm))
axs[1, 1].imshow(added_image2)
axs[1, 2].imshow((deprocess(img2, denormalize = denorm) * heatmap2_po[:,:,None]).astype('uint8'))
plt.subplots_adjust(wspace=0, hspace = 0.01)
pil_output = fig2img(fig)
return pil_output
def get_avg_trasforms(transform_type, add_noise, blur_output, guided):
mixed_images = create_mixed_images(transform_type = transform_type,
ig_transforms = ig_transforms,
step = 0.1,
img_path = img_main,
add_noise = add_noise)
# vanilla gradients (for comparison purposes)
sailency1_van, sailency2_van = sailency(guided = guided, ssl_model = ssl_model,
img1 = mixed_images[0], img2 = mixed_images[-1],
blur_output = blur_output)
# smooth gradients (for comparison purposes)
sailency1_s, sailency2_s = smooth_grad(guided = guided, ssl_model = ssl_model,
img1 = mixed_images[0], img2 = mixed_images[-1],
blur_output = blur_output, steps = 50)
# integrated transform
sailency1, sailency2 = averaged_transforms(guided = guided, ssl_model = ssl_model,
mixed_images = mixed_images,
blur_output = blur_output)
fig, axs = plt.subplots(2, 4, figsize=(20,10))
np.vectorize(lambda ax:ax.axis('off'))(axs)
axs[0,0].imshow(show_image(mixed_images[0], denormalize = denorm))
axs[0,1].imshow(show_image(sailency1_van.detach(), squeeze = False).squeeze(), cmap = plt.cm.jet)
axs[0,1].imshow(show_image(mixed_images[0], denormalize = denorm), alpha=0.5)
axs[0,1].set_title("Vanilla Gradients")
axs[0,2].imshow(show_image(sailency1_s.detach(), squeeze = False).squeeze(), cmap = plt.cm.jet)
axs[0,2].imshow(show_image(mixed_images[0], denormalize = denorm), alpha=0.5)
axs[0,2].set_title("Smooth Gradients")
axs[0,3].imshow(show_image(sailency1.detach(), squeeze = False).squeeze(), cmap = plt.cm.jet)
axs[0,3].imshow(show_image(mixed_images[0], denormalize = denorm), alpha=0.5)
axs[0,3].set_title("Integrated Transform")
axs[1,0].imshow(show_image(mixed_images[-1], denormalize = denorm))
axs[1,1].imshow(show_image(sailency2_van.detach(), squeeze = False).squeeze(), cmap = plt.cm.jet)
axs[1,1].imshow(show_image(mixed_images[-1], denormalize = denorm), alpha=0.5)
axs[1,2].imshow(show_image(sailency2_s.detach(), squeeze = False).squeeze(), cmap = plt.cm.jet)
axs[1,2].imshow(show_image(mixed_images[-1], denormalize = denorm), alpha=0.5)
axs[1,3].imshow(show_image(sailency2.detach(), squeeze = False).squeeze(), cmap = plt.cm.jet)
axs[1,3].imshow(show_image(mixed_images[-1], denormalize = denorm), alpha=0.5)
plt.subplots_adjust(wspace=0.02, hspace = 0.02)
pil_output = fig2img(fig)
return pil_output
def get_cams():
gradcam1, gradcam2 = get_gradcam(ssl_model, img1, img2)
intcam1_mean, intcam2_mean = get_interactioncam(ssl_model, img1, img2, reduction = 'mean')
fig, axs = plt.subplots(2, 3, figsize=(20,8))
np.vectorize(lambda ax:ax.axis('off'))(axs)
axs[0,0].imshow(show_image(img1[0], squeeze = False, denormalize = denorm))
axs[0,1].imshow(overlay_heatmap(img1, gradcam1, denormalize = denorm))
axs[0,1].set_title("Grad-CAM")
axs[0,2].imshow(overlay_heatmap(img1, intcam1_mean, denormalize = denorm))
axs[0,2].set_title("IntCAM")
axs[1,0].imshow(show_image(img2[0], squeeze = False, denormalize = denorm))
axs[1,1].imshow(overlay_heatmap(img2, gradcam2, denormalize = denorm))
axs[1,2].imshow(overlay_heatmap(img2, intcam2_mean, denormalize = denorm))
plt.subplots_adjust(wspace=0.01, hspace = 0.01)
pil_output = fig2img(fig)
return pil_output
xai = gr.Blocks()
with xai:
gr.Markdown("<h1>Visualizing and Understanding Contrastive Learning, TIP Submission</h1>")
gr.Markdown("The interface is simplified as much as possible with only necessary options to select for each method")
gr.Markdown("<b>Due to the latency in Hugging Face machines (this demo is using the free CPU Basic plan with 2 CPUs), the methods are very slow. We advice to use a local machine or our Google Colab demo (link in the GitHub)</b>")
with gr.Row():
model_name = gr.Dropdown(["simclrv2 (1X)", "simclrv2 (2X)", "Barlow Twins"], label="Choose Model and press \"Load Model\"")
load_model_button = gr.Button("Load Model")
status_or_similarity = gr.inputs.Textbox(label = "Status")
with gr.Row():
gr.Markdown("You can either load two images or load a single image and augment it to get the second image (in that case please check the \"Use Augmentations\" checkbox). After that, please press on \"Show Images\". The similarity will be shown in the \"Status\" bar.")
img1 = gr.Image(type='pil', label = "First Image")
img2 = gr.Image(type='pil', label = "Second Image")
with gr.Row():
use_aug = gr.Checkbox(value = False, label = "Use Augmentations")
load_images_button = gr.Button("Show Images")
gr.Markdown("Choose a method from the different tabs. You may leave the default options as they are and press on \"Run\" ")
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem("Interaction-CAM"):
cams_button = gr.Button("Get Heatmaps")
with gr.TabItem("Perturbation Methods"):
w_size = gr.Number(value = 64, label = "Occlusion Window Size", precision = 0)
stride = gr.Number(value = 8, label = "Occlusion Stride", precision = 0)
occlusion_button = gr.Button("Get Heatmap")
with gr.TabItem("Averaged Transforms"):
transform_type = gr.inputs.Radio(label="Data Augment", choices=['color_jitter', 'blur', 'grayscale', 'solarize', 'combine'], default="combine")
add_noise = gr.Checkbox(value = True, label = "Add Noise")
blur_output = gr.Checkbox(value = True, label = "Blur Output")
guided = gr.Checkbox(value = True, label = "Guided Backprop")
avgtransform_button = gr.Button("Get Saliency")
with gr.Column():
output_image = gr.Image(type='pil', show_label = False)
load_model_button.click(load_model, inputs = model_name, outputs = status_or_similarity)
load_images_button.click(load_or_augment_images, inputs = [img1, img2, use_aug], outputs = [output_image, status_or_similarity])
occlusion_button.click(run_occlusion, inputs=[w_size,stride], outputs=output_image)
avgtransform_button.click(get_avg_trasforms, inputs = [transform_type, add_noise, blur_output, guided], outputs = output_image)
cams_button.click(get_cams, inputs = [], outputs = output_image)
xai.launch()
|