Spaces:
Running
Running
File size: 14,285 Bytes
835894d da85b9a 835894d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import torch
import numpy as np
import torch.nn as nn
import torchvision.transforms as transforms
import matplotlib
import matplotlib.pyplot as plt
from PIL import Image
import cv2
import gradio as gr
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
from data_transforms import normal_transforms, no_shift_transforms, ig_transforms, modify_transforms
from utils import overlay_heatmap, viz_map, show_image, deprocess, get_ssl_model, fig2img
from methods import occlusion, occlusion_context_agnositc, pairwise_occlusion
from methods import get_difference
from methods import create_mixed_images, averaged_transforms, sailency, smooth_grad
from methods import get_sample_dataset, pixel_invariance, get_gradcam, get_interactioncam
matplotlib.use('Agg')
def load_model(model_name):
global network, ssl_model, denorm
if model_name == "simclrv2 (1X)":
variant = '1x'
network = 'simclrv2'
denorm = False
elif model_name == "simclrv2 (2X)":
variant = '2x'
network = 'simclrv2'
denorm = False
elif model_name == "Barlow Twins":
network = 'barlow_twins'
variant = None
denorm = True
ssl_model = get_ssl_model(network, variant)
if network != 'simclrv2':
global normal_transforms, no_shift_transforms, ig_transforms
normal_transforms, no_shift_transforms, ig_transforms = modify_transforms(normal_transforms, no_shift_transforms, ig_transforms)
return "Loaded Model Successfully"
def load_or_augment_images(img1_input, img2_input, use_aug):
global img_main, img1, img2
img_main = img1_input.convert('RGB')
if use_aug:
img1 = normal_transforms['pure'](img_main).unsqueeze(0).to(device)
img2 = normal_transforms['aug'](img_main).unsqueeze(0).to(device)
else:
img1 = normal_transforms['pure'](img_main).unsqueeze(0).to(device)
img2 = img2_input.convert('RGB')
img2 = normal_transforms['pure'](img2).unsqueeze(0).to(device)
similarity = "Similarity: {:.3f}".format(nn.CosineSimilarity(dim=-1)(ssl_model(img1), ssl_model(img2)).item())
fig, axs = plt.subplots(1, 2, figsize=(10,10))
np.vectorize(lambda ax:ax.axis('off'))(axs)
axs[0].imshow(show_image(img1, denormalize = denorm))
axs[1].imshow(show_image(img2, denormalize = denorm))
plt.subplots_adjust(wspace=0.1, hspace = 0)
pil_output = fig2img(fig)
return pil_output, similarity
def run_occlusion(w_size, stride):
heatmap1, heatmap2 = occlusion(img1, img2, ssl_model, w_size = 64, stride = 8, batch_size = 32)
heatmap1_ca, heatmap2_ca = occlusion_context_agnositc(img1, img2, ssl_model, w_size = 64, stride = 8, batch_size = 32)
heatmap1_po, heatmap2_po = pairwise_occlusion(img1, img2, ssl_model, batch_size = 32, erase_scale = (0.1, 0.3), erase_ratio = (1, 1.5), num_erases = 100)
added_image1 = overlay_heatmap(img1, heatmap1, denormalize = denorm)
added_image2 = overlay_heatmap(img2, heatmap2, denormalize = denorm)
added_image1_ca = overlay_heatmap(img1, heatmap1_ca, denormalize = denorm)
added_image2_ca = overlay_heatmap(img2, heatmap2_ca, denormalize = denorm)
fig, axs = plt.subplots(2, 4, figsize=(20,10))
np.vectorize(lambda ax:ax.axis('off'))(axs)
axs[0, 0].imshow(show_image(img1, denormalize = denorm))
axs[0, 1].imshow(added_image1)
axs[0, 1].set_title("Conditional Occlusion")
axs[0, 2].imshow(added_image1_ca)
axs[0, 2].set_title("CA Cond. Occlusion")
axs[0, 3].imshow((deprocess(img1, denormalize = denorm) * heatmap1_po[:,:,None]).astype('uint8'))
axs[0, 3].set_title("Pairwise Occlusion")
axs[1, 0].imshow(show_image(img2, denormalize = denorm))
axs[1, 1].imshow(added_image2)
axs[1, 2].imshow(added_image2_ca)
axs[1, 3].imshow((deprocess(img2, denormalize = denorm) * heatmap2_po[:,:,None]).astype('uint8'))
plt.subplots_adjust(wspace=0, hspace = 0.01)
pil_output = fig2img(fig)
return pil_output
def get_model_difference(later):
imagenet_images, ssl_images = get_difference(ssl_model = ssl_model, baseline = 'imagenet', image = img2, lr = 1e4,
l2_weight = 0.1, alpha_weight = 1e-7, alpha_power = 6, tv_weight = 1e-8,
init_scale = 0.1, network = network)
fig, axs = plt.subplots(3, 3, figsize=(10,10))
np.vectorize(lambda ax:ax.axis('off'))(axs)
for aa, (in_img, ssl_img) in enumerate(zip(imagenet_images, ssl_images)):
axs[aa,0].imshow(deprocess(img2, denormalize = denorm))
axs[aa,1].imshow(deprocess(in_img))
axs[aa,2].imshow(deprocess(ssl_img))
axs[0,0].set_title("Original Image")
axs[0,1].set_title("Synthesized (cls)")
axs[0,2].set_title("Synthesized (contastive)")
plt.subplots_adjust(wspace=0.01, hspace = 0.01)
pil_output = fig2img(fig)
return pil_output
def get_avg_trasforms(transform_type, add_noise, blur_output, guided):
mixed_images = create_mixed_images(transform_type = transform_type,
ig_transforms = ig_transforms,
step = 0.1,
img_path = img_main,
add_noise = add_noise)
# vanilla gradients (for comparison purposes)
sailency1_van, sailency2_van = sailency(guided = guided, ssl_model = ssl_model,
img1 = mixed_images[0], img2 = mixed_images[-1],
blur_output = blur_output)
# smooth gradients (for comparison purposes)
sailency1_s, sailency2_s = smooth_grad(guided = guided, ssl_model = ssl_model,
img1 = mixed_images[0], img2 = mixed_images[-1],
blur_output = blur_output, steps = 50)
# integrated transform
sailency1, sailency2 = averaged_transforms(guided = guided, ssl_model = ssl_model,
mixed_images = mixed_images,
blur_output = blur_output)
fig, axs = plt.subplots(2, 4, figsize=(20,10))
np.vectorize(lambda ax:ax.axis('off'))(axs)
axs[0,0].imshow(show_image(mixed_images[0], denormalize = denorm))
axs[0,1].imshow(show_image(sailency1_van.detach(), squeeze = False).squeeze(), cmap = plt.cm.jet)
axs[0,1].imshow(show_image(mixed_images[0], denormalize = denorm), alpha=0.5)
axs[0,1].set_title("Vanilla Gradients")
axs[0,2].imshow(show_image(sailency1_s.detach(), squeeze = False).squeeze(), cmap = plt.cm.jet)
axs[0,2].imshow(show_image(mixed_images[0], denormalize = denorm), alpha=0.5)
axs[0,2].set_title("Smooth Gradients")
axs[0,3].imshow(show_image(sailency1.detach(), squeeze = False).squeeze(), cmap = plt.cm.jet)
axs[0,3].imshow(show_image(mixed_images[0], denormalize = denorm), alpha=0.5)
axs[0,3].set_title("Integrated Transform")
axs[1,0].imshow(show_image(mixed_images[-1], denormalize = denorm))
axs[1,1].imshow(show_image(sailency2_van.detach(), squeeze = False).squeeze(), cmap = plt.cm.jet)
axs[1,1].imshow(show_image(mixed_images[-1], denormalize = denorm), alpha=0.5)
axs[1,2].imshow(show_image(sailency2_s.detach(), squeeze = False).squeeze(), cmap = plt.cm.jet)
axs[1,2].imshow(show_image(mixed_images[-1], denormalize = denorm), alpha=0.5)
axs[1,3].imshow(show_image(sailency2.detach(), squeeze = False).squeeze(), cmap = plt.cm.jet)
axs[1,3].imshow(show_image(mixed_images[-1], denormalize = denorm), alpha=0.5)
plt.subplots_adjust(wspace=0.02, hspace = 0.02)
pil_output = fig2img(fig)
return pil_output
def get_cams():
gradcam1, gradcam2 = get_gradcam(ssl_model, img1, img2)
intcam1_mean, intcam2_mean = get_interactioncam(ssl_model, img1, img2, reduction = 'mean')
intcam1_maxmax, intcam2_maxmax = get_interactioncam(ssl_model, img1, img2, reduction = 'max', grad_interact = True)
intcam1_attnmax, intcam2_attnmax = get_interactioncam(ssl_model, img1, img2, reduction = 'attn', grad_interact = True)
fig, axs = plt.subplots(2, 5, figsize=(20,8))
np.vectorize(lambda ax:ax.axis('off'))(axs)
axs[0,0].imshow(show_image(img1[0], squeeze = False, denormalize = denorm))
axs[0,1].imshow(overlay_heatmap(img1, gradcam1, denormalize = denorm))
axs[0,1].set_title("Grad-CAM")
axs[0,2].imshow(overlay_heatmap(img1, intcam1_mean, denormalize = denorm))
axs[0,2].set_title("IntCAM Mean")
axs[0,3].imshow(overlay_heatmap(img1, intcam1_maxmax, denormalize = denorm))
axs[0,3].set_title("IntCAM Max + IntGradMax")
axs[0,4].imshow(overlay_heatmap(img1, intcam1_attnmax, denormalize = denorm))
axs[0,4].set_title("IntCAM Attn + IntGradMax")
axs[1,0].imshow(show_image(img2[0], squeeze = False, denormalize = denorm))
axs[1,1].imshow(overlay_heatmap(img2, gradcam2, denormalize = denorm))
axs[1,2].imshow(overlay_heatmap(img2, intcam2_mean, denormalize = denorm))
axs[1,3].imshow(overlay_heatmap(img2, intcam2_maxmax, denormalize = denorm))
axs[1,4].imshow(overlay_heatmap(img2, intcam2_attnmax, denormalize = denorm))
plt.subplots_adjust(wspace=0.01, hspace = 0.01)
pil_output = fig2img(fig)
return pil_output
def get_pixel_invariance():
data_samples1, data_samples2, data_labels, labels_invariance = get_sample_dataset(img_path = img_main,
num_augments = 1000,
batch_size = 32,
no_shift_transforms = no_shift_transforms,
ssl_model = ssl_model,
n_components = 10)
inv_heatmap = pixel_invariance(data_samples1 = data_samples1, data_samples2 = data_samples2, data_labels = data_labels,
labels_invariance = labels_invariance, resize_transform = transforms.Resize, size = 64,
epochs = 1000, learning_rate = 0.1, l1_weight = 0.2, zero_small_values = True,
blur_output = True, nmf_weight = 0)
inv_heatmap_nmf = pixel_invariance(data_samples1 = data_samples1, data_samples2 = data_samples2, data_labels = data_labels,
labels_invariance = labels_invariance, resize_transform = transforms.Resize, size = 64,
epochs = 100, learning_rate = 0.1, l1_weight = 0.2, zero_small_values = True,
blur_output = True, nmf_weight = 1)
fig, axs = plt.subplots(1, 2, figsize=(10,5))
np.vectorize(lambda ax:ax.axis('off'))(axs)
axs[0].imshow(viz_map(img_main, inv_heatmap))
axs[0].set_title("Heatmap w/o NMF")
axs[1].imshow(viz_map(img_main, inv_heatmap_nmf))
axs[1].set_title("Heatmap w/ NMF")
plt.subplots_adjust(wspace=0.01, hspace = 0.01)
pil_output = fig2img(fig)
return pil_output
xai = gr.Blocks()
with xai:
gr.Markdown("<h1>Methods for Explaining Contrastive Learning, CVPR 2023 Submission</h1>")
gr.Markdown("The interface is simplified as much as possible with only necessary options to select for each method. Please use our Google Colab demo for more flexibility.")
with gr.Row():
model_name = gr.Dropdown(["simclrv2 (1X)", "simclrv2 (2X)", "Barlow Twins"], label="Choose Model and press \"Load Model\"")
load_model_button = gr.Button("Load Model")
status_or_similarity = gr.inputs.Textbox(label = "Status")
with gr.Row():
gr.Markdown("You can either load two images or load a single image and augment it to get the second image (in that case please check the \"Use Augmentations\" button). After that, please press on \"Show Images\"")
img1 = gr.Image(type='pil', label = "First Image")
img2 = gr.Image(type='pil', label = "Second Image")
with gr.Row():
use_aug = gr.Checkbox(value = False, label = "Use Augmentations")
load_images_button = gr.Button("Show Images")
gr.Markdown("Choose a method from the different tabs. You may leave the default options as they are and press on \"Run\" ")
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem("Interaction-CAM"):
cams_button = gr.Button("Get Heatmaps")
with gr.TabItem("Perturbation Methods"):
w_size = gr.Number(value = 64, label = "Occlusion Window Size", precision = 0)
stride = gr.Number(value = 8, label = "Occlusion Stride", precision = 0)
occlusion_button = gr.Button("Get Heatmap")
with gr.TabItem("Averaged Transforms"):
transform_type = gr.inputs.Radio(label="Data Augment", choices=['color_jitter', 'blur', 'grayscale', 'solarize', 'combine'], default="combine")
add_noise = gr.Checkbox(value = True, label = "Add Noise")
blur_output = gr.Checkbox(value = True, label = "Blur Output")
guided = gr.Checkbox(value = True, label = "Guided Backprop")
avgtransform_button = gr.Button("Get Saliency")
with gr.TabItem("Pixel Invariance"):
gr.Markdown("Note: Invariance map will be obtained for the first image")
pixel_invariance_button = gr.Button("Get Invariance Map")
with gr.TabItem("Image Synthesization"):
baseline = gr.inputs.Radio(label="Compare With", choices=["Supervised Classification"], default="Supervised Classification")
modeldiff_button = gr.Button("Compare")
with gr.Column():
output_image = gr.Image(type='pil', show_label = False)
load_model_button.click(load_model, inputs = model_name, outputs = status_or_similarity)
load_images_button.click(load_or_augment_images, inputs = [img1, img2, use_aug], outputs = [output_image, status_or_similarity])
occlusion_button.click(run_occlusion, inputs=[w_size,stride], outputs=output_image)
modeldiff_button.click(get_model_difference, inputs = baseline, outputs = output_image)
avgtransform_button.click(get_avg_trasforms, inputs = [transform_type, add_noise, blur_output, guided], outputs = output_image)
cams_button.click(get_cams, inputs = [], outputs = output_image)
pixel_invariance_button.click(get_pixel_invariance, inputs = [], outputs = output_image)
xai.launch()
|