from annoy import AnnoyIndex from face_recognition import FacenetPytorch import numpy as np from numpy.linalg import norm class PhotoSearch: def __init__ (self, tree_path, data_path, index_size = 512): self.tree_path = tree_path self.data_path = data_path self.t = AnnoyIndex(index_size, 'angular') self.t.load(tree_path) data = np.load(data_path, allow_pickle=True) self.face_grive_id = data.f.id self.extractor = FacenetPytorch() def search(self, image): face_emb = self.extractor.get_embedding(image) nns = self.t.get_nns_by_vector(face_emb, 20) result = [] for n in nns: face_origin = self.t.get_item_vector(n) print(self.face_grive_id[n]) if self.cosine(face_emb, face_origin) < 0.7: continue result.append('get..') return result def cosine(self, x, y): return np.dot(x,y)/(norm(x)*norm(y))