|
import sys |
|
import torch |
|
from peft import PeftModel, PeftModelForCausalLM, LoraConfig |
|
import transformers |
|
import gradio as gr |
|
import argparse |
|
import warnings |
|
import os |
|
from utils import StreamPeftGenerationMixin,StreamLlamaForCausalLM |
|
assert ( |
|
"LlamaTokenizer" in transformers._import_structure["models.llama"] |
|
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git" |
|
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model_path", type=str, default="/model/13B_hf") |
|
parser.add_argument("--lora_path", type=str, default="checkpoint-3000") |
|
parser.add_argument("--use_typewriter", type=int, default=1) |
|
parser.add_argument("--use_local", type=int, default=1) |
|
args = parser.parse_args() |
|
print(args) |
|
tokenizer = LlamaTokenizer.from_pretrained(args.model_path) |
|
|
|
LOAD_8BIT = True |
|
BASE_MODEL = args.model_path |
|
LORA_WEIGHTS = args.lora_path |
|
|
|
|
|
|
|
lora_bin_path = os.path.join(args.lora_path, "adapter_model.bin") |
|
print(lora_bin_path) |
|
if not os.path.exists(lora_bin_path) and args.use_local: |
|
pytorch_bin_path = os.path.join(args.lora_path, "pytorch_model.bin") |
|
print(pytorch_bin_path) |
|
if os.path.exists(pytorch_bin_path): |
|
os.rename(pytorch_bin_path, lora_bin_path) |
|
warnings.warn( |
|
"The file name of the lora checkpoint'pytorch_model.bin' is replaced with 'adapter_model.bin'" |
|
) |
|
else: |
|
assert ('Checkpoint is not Found!') |
|
|
|
if torch.cuda.is_available(): |
|
device = "cuda" |
|
else: |
|
device = "cpu" |
|
|
|
try: |
|
if torch.backends.mps.is_available(): |
|
device = "mps" |
|
except: |
|
pass |
|
|
|
if device == "cuda": |
|
model = LlamaForCausalLM.from_pretrained( |
|
BASE_MODEL, |
|
load_in_8bit=LOAD_8BIT, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
model = StreamPeftGenerationMixin.from_pretrained( |
|
model, LORA_WEIGHTS, torch_dtype=torch.float16, device_map="auto", |
|
) |
|
elif device == "mps": |
|
model = LlamaForCausalLM.from_pretrained( |
|
BASE_MODEL, |
|
device_map={"": device}, |
|
torch_dtype=torch.float16, |
|
) |
|
model = StreamPeftGenerationMixin.from_pretrained( |
|
model, |
|
LORA_WEIGHTS, |
|
device_map={"": device}, |
|
torch_dtype=torch.float16, |
|
) |
|
else: |
|
model = LlamaForCausalLM.from_pretrained( |
|
BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True |
|
) |
|
model = StreamPeftGenerationMixin.from_pretrained( |
|
model, |
|
LORA_WEIGHTS, |
|
device_map={"": device}, |
|
) |
|
|
|
|
|
def generate_prompt(instruction, input=None): |
|
if input: |
|
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. |
|
|
|
### Instruction: |
|
{instruction} |
|
|
|
### Input: |
|
{input} |
|
|
|
### Response:""" |
|
else: |
|
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
|
|
### Instruction: |
|
{instruction} |
|
|
|
### Response:""" |
|
|
|
|
|
if not LOAD_8BIT: |
|
model.half() |
|
|
|
model.eval() |
|
if torch.__version__ >= "2" and sys.platform != "win32": |
|
model = torch.compile(model) |
|
|
|
|
|
def evaluate( |
|
input, |
|
temperature=0.1, |
|
top_p=0.75, |
|
top_k=40, |
|
num_beams=4, |
|
max_new_tokens=128, |
|
min_new_tokens=1, |
|
repetition_penalty=2.0, |
|
**kwargs, |
|
): |
|
prompt = generate_prompt(input) |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
input_ids = inputs["input_ids"].to(device) |
|
generation_config = GenerationConfig( |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
num_beams=num_beams, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
pad_token_id=0, |
|
max_new_tokens=max_new_tokens, |
|
min_new_tokens=min_new_tokens, |
|
**kwargs, |
|
) |
|
with torch.no_grad(): |
|
if args.use_typewriter: |
|
for generation_output in model.stream_generate( |
|
input_ids=input_ids, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=False, |
|
repetition_penalty=float(repetition_penalty), |
|
): |
|
outputs = tokenizer.batch_decode(generation_output) |
|
show_text = "\n--------------------------------------------\n".join( |
|
[output.split("### Response:")[1].strip().replace('๏ฟฝ','')+" โ" for output in outputs] |
|
) |
|
|
|
|
|
|
|
yield show_text |
|
yield outputs[0].split("### Response:")[1].strip().replace('๏ฟฝ','') |
|
else: |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=False, |
|
repetition_penalty=1.3, |
|
) |
|
output = generation_output.sequences[0] |
|
output = tokenizer.decode(output).split("### Response:")[1].strip() |
|
print(output) |
|
yield output |
|
|
|
|
|
gr.Interface( |
|
fn=evaluate, |
|
inputs=[ |
|
gr.components.Textbox( |
|
lines=2, label="Input", placeholder="Tell me about alpacas." |
|
), |
|
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"), |
|
gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"), |
|
gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"), |
|
gr.components.Slider(minimum=1, maximum=10, step=1, value=4, label="Beams Number"), |
|
gr.components.Slider( |
|
minimum=1, maximum=2000, step=1, value=256, label="Max New Tokens" |
|
), |
|
gr.components.Slider( |
|
minimum=1, maximum=300, step=1, value=1, label="Min New Tokens" |
|
), |
|
gr.components.Slider( |
|
minimum=0.1, maximum=10.0, step=0.1, value=2.0, label="Repetition Penalty" |
|
), |
|
], |
|
outputs=[ |
|
gr.inputs.Textbox( |
|
lines=25, |
|
label="Output", |
|
) |
|
], |
|
title="Chinese-Vicuna ไธญๆๅฐ็พ้ฉผ", |
|
description="ไธญๆๅฐ็พ้ฉผ็ฑๅ็ง้ซ่ดจ้็ๅผๆบinstructionๆฐๆฎ้๏ผ็ปๅAlpaca-lora็ไปฃ็ ่ฎญ็ป่ๆฅ๏ผๆจกๅๅบไบๅผๆบ็llama7B๏ผไธป่ฆ่ดก็ฎๆฏๅฏนๅบ็loraๆจกๅใ็ฑไบไปฃ็ ่ฎญ็ป่ตๆบ่ฆๆฑ่พๅฐ๏ผๅธๆไธบllamaไธญๆlora็คพๅบๅไธไปฝ่ดก็ฎใ", |
|
).queue().launch(share=True) |
|
|