from tensorflow.keras.datasets import imdb from Perceptron import Perceptron from tensorflow.keras.preprocessing.sequence import pad_sequences from sklearn.metrics import accuracy_score import pickle top_words = 5000 (X_train, y_train), (X_test,y_test) = imdb.load_data(num_words=top_words) max_review_length = 500 X_train = pad_sequences(X_train, maxlen=max_review_length) X_test = pad_sequences(X_test, maxlen=max_review_length) percep = Perceptron(epochs=100) percep.fit(X_train, y_train) pred = percep.predict(X_test) print(f"Accuracy : {accuracy_score(pred, y_test)}") with open(r'C:\Users\shahi\Desktop\My Projects\DeepPredictorHub\PP.pkl','wb') as file: pickle.dump(percep, file)