Spaces:
Runtime error
Runtime error
Upload imdb_rnn.py
Browse files- imdb_rnn.py +65 -0
imdb_rnn.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import seaborn as sns
|
4 |
+
from sklearn.model_selection import train_test_split
|
5 |
+
import tensorflow as tf
|
6 |
+
|
7 |
+
|
8 |
+
from numpy import argmax
|
9 |
+
from tensorflow.keras import Sequential
|
10 |
+
from tensorflow.keras.layers import Dense
|
11 |
+
from tensorflow.keras.optimizers import RMSprop, Adam
|
12 |
+
from tensorflow.keras.datasets import imdb
|
13 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
14 |
+
from sklearn.metrics import accuracy_score
|
15 |
+
import pickle
|
16 |
+
|
17 |
+
top_words = 5000
|
18 |
+
(X_train, y_train), (X_test,y_test) = imdb.load_data(num_words=top_words)
|
19 |
+
|
20 |
+
max_review_length = 500
|
21 |
+
X_train = pad_sequences(X_train, maxlen=max_review_length)
|
22 |
+
X_test = pad_sequences(X_test, maxlen=max_review_length)
|
23 |
+
|
24 |
+
model=tf.keras.models.Sequential([
|
25 |
+
tf.keras.layers.Embedding(input_dim=top_words,output_dim= 24, input_length=max_review_length),
|
26 |
+
tf.keras.layers.SimpleRNN(24, return_sequences=False),
|
27 |
+
tf.keras.layers.Dense(64, activation='relu'),
|
28 |
+
tf.keras.layers.Dense(32, activation='relu'),
|
29 |
+
tf.keras.layers.Dense(1, activation='sigmoid')
|
30 |
+
])
|
31 |
+
|
32 |
+
# compile the model
|
33 |
+
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
|
34 |
+
|
35 |
+
print("---------------------- -------------------------\n")
|
36 |
+
|
37 |
+
# summarize the model
|
38 |
+
print(model.summary())
|
39 |
+
|
40 |
+
print("---------------------- -------------------------\n")
|
41 |
+
|
42 |
+
early_stop = tf.keras.callbacks.EarlyStopping(monitor='accuracy', mode='min', patience=10)
|
43 |
+
|
44 |
+
print("---------------------- Training -------------------------\n")
|
45 |
+
|
46 |
+
# fit the model
|
47 |
+
model.fit(x=X_train,
|
48 |
+
y=y_train,
|
49 |
+
epochs=100,
|
50 |
+
validation_data=(X_test, y_test),
|
51 |
+
callbacks=[early_stop]
|
52 |
+
)
|
53 |
+
print("---------------------- -------------------------\n")
|
54 |
+
|
55 |
+
|
56 |
+
def acc_report(y_true, y_pred):
|
57 |
+
acc_sc = accuracy_score(y_true, y_pred)
|
58 |
+
print(f"Accuracy : {str(round(acc_sc,2)*100)}")
|
59 |
+
return acc_sc
|
60 |
+
|
61 |
+
|
62 |
+
preds = (model.predict(X_test) > 0.5).astype("int32")
|
63 |
+
print(acc_report(y_test, preds))
|
64 |
+
|
65 |
+
model.save(r'C:\Users\shahi\Desktop\My Projects\DeepPredictorHub\RN.keras')
|