File size: 3,671 Bytes
db29847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import numpy as np
import matplotlib.pyplot as plt
import cv2
import os
import tensorflow as tf
from PIL import Image
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from tqdm import tqdm

image_dir=r"C:\Users\shahi\Desktop\My Projects\DeepPredictorHub\CNN\tumordata"
no_tumor_images=os.listdir(r"C:\Users\shahi\Desktop\My Projects\DeepPredictorHub\CNN\tumordata\no")
yes_tumor_images=os.listdir(r"C:\Users\shahi\Desktop\My Projects\DeepPredictorHub\CNN\tumordata\yes")


dataset=[]
label=[]
img_siz=(128,128)


for i , image_name in tqdm(enumerate(no_tumor_images),desc="No Tumor"):
    if(image_name.split('.')[1]=='jpg'):
        image=cv2.imread(image_dir+'/no/'+image_name)
        image=Image.fromarray(image,'RGB')
        image=image.resize(img_siz)
        dataset.append(np.array(image))
        label.append(0)
        
        
for i ,image_name in tqdm(enumerate(yes_tumor_images),desc="Tumor"):
    if(image_name.split('.')[1]=='jpg'):
        image=cv2.imread(image_dir+'/yes/'+image_name)
        image=Image.fromarray(image,'RGB')
        image=image.resize(img_siz)
        dataset.append(np.array(image))
        label.append(1)
        
        
dataset=np.array(dataset)
label = np.array(label)

print("--------------------------------------\n")
print('Dataset Length: ',len(dataset))
print('Label Length: ',len(label))
print("--------------------------------------\n")


print("--------------------------------------\n")
print("Train-Test Split")
x_train,x_test,y_train,y_test=train_test_split(dataset,label,test_size=0.2,random_state=42)
print("--------------------------------------\n")

print("--------------------------------------\n")
print("Normalaising the Dataset. \n")

# x_train=x_train.astype('float')/255
# x_test=x_test.astype('float')/255 

# Same step above is implemented using tensorflow functions.

x_train=tf.keras.utils.normalize(x_train,axis=1)
x_test=tf.keras.utils.normalize(x_test,axis=1)

print("--------------------------------------\n")


model=tf.keras.models.Sequential([
    tf.keras.layers.Conv2D(32,(3,3),activation='relu',input_shape=(128,128,3)),
    tf.keras.layers.MaxPooling2D((2,2)),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(256,activation='relu'),
    tf.keras.layers.Dropout(0.5),
    tf.keras.layers.Dense(512,activation='relu'),
    tf.keras.layers.Dense(1,activation='sigmoid')
])
print("--------------------------------------\n")
model.summary()
print("--------------------------------------\n")

model.compile(optimizer='adam',
            loss='binary_crossentropy',
            metrics=['accuracy'])


print("--------------------------------------\n")
print("Training Started.\n")
history=model.fit(x_train,y_train,epochs=20,batch_size =128,validation_split=0.1)
print("Training Finished.\n")
print("--------------------------------------\n")



print("--------------------------------------\n")

print("Model Evalutaion Phase.\n")
loss,accuracy=model.evaluate(x_test,y_test)
print(f'Accuracy: {round(accuracy*100,2)}')
print("--------------------------------------\n")


y_pred=model.predict(x_test)
y_pred = (y_pred > 0.5).astype(int)
print('classification Report\n',classification_report(y_test,y_pred))
print("--------------------------------------\n")


def make_prediction(img,model):
    img=cv2.imread(img)
    img=Image.fromarray(img)
    img=img.resize((128,128))
    img=np.array(img)
    input_img = np.expand_dims(img, axis=0)
    res = model.predict(input_img)
    if res:
        print("Tumor Detected")
    else:
        print("No Tumor")

model.save(r'C:\Users\shahi\Desktop\My Projects\DeepPredictorHub\CN.keras')