import gradio as gr import tensorflow as tf import keras import os import numpy as np import matplotlib.pyplot as plt #loading model cycleGen=tf.keras.models.load_model('cycle-gen-models/model') cycleGen.load_weights('cycle-gen-models/weights') def imageProcessing(img): #img=tf.io.read_file(img_path) img=tf.image.decode_jpeg(img,channels=3) img=tf.image.resize(img,[256,256]) img=(img/127.5)-1 img=tf.expand_dims(img,axis=0) return img def image_change(inputs): img=imageProcessing(inputs) fake_monet,_,_,_=cycleGen((img,img),training=False) #prediction=(prediction * 127.5 + 127.5).astype(np.uint8) prediction=(fake_monet[0] * 127.5 + 127.5).numpy().astype(np.uint8) return prediction Title="Monet Mimic image 🖌️🎨" demo=gr.Interface( fn=image_change, inputs=gr.Image(type="filepath"), img=image_change(input), title=Title, outputs=gr.Image(img) ) demo.launch()