Spaces:
Sleeping
Sleeping
import torch | |
import torchvision | |
from torch import nn | |
def model_efficientb3(out_feature:int=3, | |
p:int=0.3): | |
"""Creates an EfficientNetB2 feature extractor model and transforms. | |
Args: | |
num_classes (int, optional): number of classes in the classifier head. | |
Defaults to 3. | |
seed (int, optional): random seed value. Defaults to 42. | |
Returns: | |
model (torch.nn.Module): EffNetB2 feature extractor model. | |
transforms (torchvision.transforms): EffNetB2 image transforms. | |
""" | |
weights=torchvision.models.EfficientNet_B3_Weights.DEFAULT | |
transform=weights.transforms() | |
model=torchvision.models.efficientnet_b3(weights=weights) | |
for params in model.parameters(): | |
params.requires_grad=False | |
print(model.classifier) | |
model.classifier=nn.Sequential( | |
nn.Dropout(p=p,inplace=True), | |
nn.Linear(in_features=1536,out_features=out_feature,bias=True) | |
) | |
print(f"the new classifier as per your request \n {model.classifier}") | |
return model,transform | |