Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import torchvision | |
import os | |
from model import model_efficientb3 | |
from timeit import default_timer as Timer | |
from typing import Tuple,Dict | |
class_name=["pizza","steak","sushi"] | |
effnetb3,effentb3_tranforms=model_efficientb3(out_feature=3) | |
effnetb3.load_state_dict( | |
torch.load( | |
f="09_pretrained_effnetb3_feature_extractor_pizza_steak_sushi_20_percent.pth", | |
map_location=torch.device("cpu") | |
) | |
) | |
def predict(img) -> Tuple[Dict,float]: | |
start_time=Timer() | |
img=effentb3_tranforms(img).unsqueeze(0) | |
effnetb3.eval() | |
with torch.inference_mode(): | |
pred_probs=torch.softmax(effnetb3(img),dim=1) | |
pred_labels_and_probs={class_name[i]: float(pred_probs[0][i]) for i in range(len(class_name))} | |
pred_time=round(Timer()-start_time,5) | |
return pred_labels_and_probs,pred_time | |
title="FoodVision Mini ππ₯©π£" | |
description= "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi." | |
article="tryin to learn pytorch" | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
demo=gr.Interface(fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=[gr.Label(num_top_classes=3,label="Prediction"), | |
gr.Number(label="Prediction time (s)")], | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article) | |
demo.launch() | |