Foodvision_mini / app.py
Anithprakash's picture
Update app.py
24349a5 verified
import gradio as gr
import torch
import torchvision
import os
from model import model_efficientb3
from timeit import default_timer as Timer
from typing import Tuple,Dict
class_name=["pizza","steak","sushi"]
effnetb3,effentb3_tranforms=model_efficientb3(out_feature=3)
effnetb3.load_state_dict(
torch.load(
f="09_pretrained_effnetb3_feature_extractor_pizza_steak_sushi_20_percent.pth",
map_location=torch.device("cpu")
)
)
def predict(img) -> Tuple[Dict,float]:
start_time=Timer()
img=effentb3_tranforms(img).unsqueeze(0)
effnetb3.eval()
with torch.inference_mode():
pred_probs=torch.softmax(effnetb3(img),dim=1)
pred_labels_and_probs={class_name[i]: float(pred_probs[0][i]) for i in range(len(class_name))}
pred_time=round(Timer()-start_time,5)
return pred_labels_and_probs,pred_time
title="FoodVision Mini πŸ•πŸ₯©πŸ£"
description= "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi."
article="tryin to learn pytorch"
example_list = [["examples/" + example] for example in os.listdir("examples")]
demo=gr.Interface(fn=predict,
inputs=gr.Image(type="pil"),
outputs=[gr.Label(num_top_classes=3,label="Prediction"),
gr.Number(label="Prediction time (s)")],
examples=example_list,
title=title,
description=description,
article=article)
demo.launch()