Spaces:
Build error
Build error
import logging | |
import sys | |
import torch | |
from mmdet.core import (bbox2roi, bbox_mapping, merge_aug_bboxes, | |
merge_aug_masks, multiclass_nms) | |
logger = logging.getLogger(__name__) | |
if sys.version_info >= (3, 7): | |
from mmdet.utils.contextmanagers import completed | |
class BBoxTestMixin(object): | |
if sys.version_info >= (3, 7): | |
async def async_test_bboxes(self, | |
x, | |
img_metas, | |
proposals, | |
rcnn_test_cfg, | |
rescale=False, | |
bbox_semaphore=None, | |
global_lock=None): | |
"""Asynchronized test for box head without augmentation.""" | |
rois = bbox2roi(proposals) | |
roi_feats = self.bbox_roi_extractor( | |
x[:len(self.bbox_roi_extractor.featmap_strides)], rois) | |
if self.with_shared_head: | |
roi_feats = self.shared_head(roi_feats) | |
sleep_interval = rcnn_test_cfg.get('async_sleep_interval', 0.017) | |
async with completed( | |
__name__, 'bbox_head_forward', | |
sleep_interval=sleep_interval): | |
cls_score, bbox_pred = self.bbox_head(roi_feats) | |
img_shape = img_metas[0]['img_shape'] | |
scale_factor = img_metas[0]['scale_factor'] | |
det_bboxes, det_labels = self.bbox_head.get_bboxes( | |
rois, | |
cls_score, | |
bbox_pred, | |
img_shape, | |
scale_factor, | |
rescale=rescale, | |
cfg=rcnn_test_cfg) | |
return det_bboxes, det_labels | |
def simple_test_bboxes(self, | |
x, | |
img_metas, | |
proposals, | |
rcnn_test_cfg, | |
rescale=False): | |
"""Test only det bboxes without augmentation. | |
Args: | |
x (tuple[Tensor]): Feature maps of all scale level. | |
img_metas (list[dict]): Image meta info. | |
proposals (Tensor or List[Tensor]): Region proposals. | |
rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN. | |
rescale (bool): If True, return boxes in original image space. | |
Default: False. | |
Returns: | |
tuple[list[Tensor], list[Tensor]]: The first list contains | |
the boxes of the corresponding image in a batch, each | |
tensor has the shape (num_boxes, 5) and last dimension | |
5 represent (tl_x, tl_y, br_x, br_y, score). Each Tensor | |
in the second list is the labels with shape (num_boxes, ). | |
The length of both lists should be equal to batch_size. | |
""" | |
# get origin input shape to support onnx dynamic input shape | |
if torch.onnx.is_in_onnx_export(): | |
assert len( | |
img_metas | |
) == 1, 'Only support one input image while in exporting to ONNX' | |
img_shapes = img_metas[0]['img_shape_for_onnx'] | |
else: | |
img_shapes = tuple(meta['img_shape'] for meta in img_metas) | |
scale_factors = tuple(meta['scale_factor'] for meta in img_metas) | |
# The length of proposals of different batches may be different. | |
# In order to form a batch, a padding operation is required. | |
if isinstance(proposals, list): | |
# padding to form a batch | |
max_size = max([proposal.size(0) for proposal in proposals]) | |
for i, proposal in enumerate(proposals): | |
supplement = proposal.new_full( | |
(max_size - proposal.size(0), proposal.size(1)), 0) | |
proposals[i] = torch.cat((supplement, proposal), dim=0) | |
rois = torch.stack(proposals, dim=0) | |
else: | |
rois = proposals | |
batch_index = torch.arange( | |
rois.size(0), device=rois.device).float().view(-1, 1, 1).expand( | |
rois.size(0), rois.size(1), 1) | |
rois = torch.cat([batch_index, rois[..., :4]], dim=-1) | |
batch_size = rois.shape[0] | |
num_proposals_per_img = rois.shape[1] | |
# Eliminate the batch dimension | |
rois = rois.view(-1, 5) | |
bbox_results = self._bbox_forward(x, rois) | |
cls_score = bbox_results['cls_score'] | |
bbox_pred = bbox_results['bbox_pred'] | |
# Recover the batch dimension | |
rois = rois.reshape(batch_size, num_proposals_per_img, -1) | |
cls_score = cls_score.reshape(batch_size, num_proposals_per_img, -1) | |
if not torch.onnx.is_in_onnx_export(): | |
# remove padding | |
supplement_mask = rois[..., -1] == 0 | |
cls_score[supplement_mask, :] = 0 | |
# bbox_pred would be None in some detector when with_reg is False, | |
# e.g. Grid R-CNN. | |
if bbox_pred is not None: | |
# the bbox prediction of some detectors like SABL is not Tensor | |
if isinstance(bbox_pred, torch.Tensor): | |
bbox_pred = bbox_pred.reshape(batch_size, | |
num_proposals_per_img, -1) | |
if not torch.onnx.is_in_onnx_export(): | |
bbox_pred[supplement_mask, :] = 0 | |
else: | |
# TODO: Looking forward to a better way | |
# For SABL | |
bbox_preds = self.bbox_head.bbox_pred_split( | |
bbox_pred, num_proposals_per_img) | |
# apply bbox post-processing to each image individually | |
det_bboxes = [] | |
det_labels = [] | |
for i in range(len(proposals)): | |
# remove padding | |
supplement_mask = proposals[i][..., -1] == 0 | |
for bbox in bbox_preds[i]: | |
bbox[supplement_mask] = 0 | |
det_bbox, det_label = self.bbox_head.get_bboxes( | |
rois[i], | |
cls_score[i], | |
bbox_preds[i], | |
img_shapes[i], | |
scale_factors[i], | |
rescale=rescale, | |
cfg=rcnn_test_cfg) | |
det_bboxes.append(det_bbox) | |
det_labels.append(det_label) | |
return det_bboxes, det_labels | |
else: | |
bbox_pred = None | |
return self.bbox_head.get_bboxes( | |
rois, | |
cls_score, | |
bbox_pred, | |
img_shapes, | |
scale_factors, | |
rescale=rescale, | |
cfg=rcnn_test_cfg) | |
def aug_test_bboxes(self, feats, img_metas, proposal_list, rcnn_test_cfg): | |
"""Test det bboxes with test time augmentation.""" | |
aug_bboxes = [] | |
aug_scores = [] | |
for x, img_meta in zip(feats, img_metas): | |
# only one image in the batch | |
img_shape = img_meta[0]['img_shape'] | |
scale_factor = img_meta[0]['scale_factor'] | |
flip = img_meta[0]['flip'] | |
flip_direction = img_meta[0]['flip_direction'] | |
# TODO more flexible | |
proposals = bbox_mapping(proposal_list[0][:, :4], img_shape, | |
scale_factor, flip, flip_direction) | |
rois = bbox2roi([proposals]) | |
bbox_results = self._bbox_forward(x, rois) | |
bboxes, scores = self.bbox_head.get_bboxes( | |
rois, | |
bbox_results['cls_score'], | |
bbox_results['bbox_pred'], | |
img_shape, | |
scale_factor, | |
rescale=False, | |
cfg=None) | |
aug_bboxes.append(bboxes) | |
aug_scores.append(scores) | |
# after merging, bboxes will be rescaled to the original image size | |
merged_bboxes, merged_scores = merge_aug_bboxes( | |
aug_bboxes, aug_scores, img_metas, rcnn_test_cfg) | |
det_bboxes, det_labels = multiclass_nms(merged_bboxes, merged_scores, | |
rcnn_test_cfg.score_thr, | |
rcnn_test_cfg.nms, | |
rcnn_test_cfg.max_per_img) | |
return det_bboxes, det_labels | |
class MaskTestMixin(object): | |
if sys.version_info >= (3, 7): | |
async def async_test_mask(self, | |
x, | |
img_metas, | |
det_bboxes, | |
det_labels, | |
rescale=False, | |
mask_test_cfg=None): | |
"""Asynchronized test for mask head without augmentation.""" | |
# image shape of the first image in the batch (only one) | |
ori_shape = img_metas[0]['ori_shape'] | |
scale_factor = img_metas[0]['scale_factor'] | |
if det_bboxes.shape[0] == 0: | |
segm_result = [[] for _ in range(self.mask_head.num_classes)] | |
else: | |
if rescale and not isinstance(scale_factor, | |
(float, torch.Tensor)): | |
scale_factor = det_bboxes.new_tensor(scale_factor) | |
_bboxes = ( | |
det_bboxes[:, :4] * | |
scale_factor if rescale else det_bboxes) | |
mask_rois = bbox2roi([_bboxes]) | |
mask_feats = self.mask_roi_extractor( | |
x[:len(self.mask_roi_extractor.featmap_strides)], | |
mask_rois) | |
if self.with_shared_head: | |
mask_feats = self.shared_head(mask_feats) | |
if mask_test_cfg and mask_test_cfg.get('async_sleep_interval'): | |
sleep_interval = mask_test_cfg['async_sleep_interval'] | |
else: | |
sleep_interval = 0.035 | |
async with completed( | |
__name__, | |
'mask_head_forward', | |
sleep_interval=sleep_interval): | |
mask_pred = self.mask_head(mask_feats) | |
segm_result = self.mask_head.get_seg_masks( | |
mask_pred, _bboxes, det_labels, self.test_cfg, ori_shape, | |
scale_factor, rescale) | |
return segm_result | |
def simple_test_mask(self, | |
x, | |
img_metas, | |
det_bboxes, | |
det_labels, | |
rescale=False): | |
"""Simple test for mask head without augmentation.""" | |
# image shapes of images in the batch | |
ori_shapes = tuple(meta['ori_shape'] for meta in img_metas) | |
scale_factors = tuple(meta['scale_factor'] for meta in img_metas) | |
# The length of proposals of different batches may be different. | |
# In order to form a batch, a padding operation is required. | |
if isinstance(det_bboxes, list): | |
# padding to form a batch | |
max_size = max([bboxes.size(0) for bboxes in det_bboxes]) | |
for i, (bbox, label) in enumerate(zip(det_bboxes, det_labels)): | |
supplement_bbox = bbox.new_full( | |
(max_size - bbox.size(0), bbox.size(1)), 0) | |
supplement_label = label.new_full((max_size - label.size(0), ), | |
0) | |
det_bboxes[i] = torch.cat((supplement_bbox, bbox), dim=0) | |
det_labels[i] = torch.cat((supplement_label, label), dim=0) | |
det_bboxes = torch.stack(det_bboxes, dim=0) | |
det_labels = torch.stack(det_labels, dim=0) | |
batch_size = det_bboxes.size(0) | |
num_proposals_per_img = det_bboxes.shape[1] | |
# if det_bboxes is rescaled to the original image size, we need to | |
# rescale it back to the testing scale to obtain RoIs. | |
det_bboxes = det_bboxes[..., :4] | |
if rescale: | |
if not isinstance(scale_factors[0], float): | |
scale_factors = det_bboxes.new_tensor(scale_factors) | |
det_bboxes = det_bboxes * scale_factors.unsqueeze(1) | |
batch_index = torch.arange( | |
det_bboxes.size(0), device=det_bboxes.device).float().view( | |
-1, 1, 1).expand(det_bboxes.size(0), det_bboxes.size(1), 1) | |
mask_rois = torch.cat([batch_index, det_bboxes], dim=-1) | |
mask_rois = mask_rois.view(-1, 5) | |
mask_results = self._mask_forward(x, mask_rois) | |
mask_pred = mask_results['mask_pred'] | |
# Recover the batch dimension | |
mask_preds = mask_pred.reshape(batch_size, num_proposals_per_img, | |
*mask_pred.shape[1:]) | |
# apply mask post-processing to each image individually | |
segm_results = [] | |
for i in range(batch_size): | |
mask_pred = mask_preds[i] | |
det_bbox = det_bboxes[i] | |
det_label = det_labels[i] | |
# remove padding | |
supplement_mask = det_bbox[..., -1] != 0 | |
mask_pred = mask_pred[supplement_mask] | |
det_bbox = det_bbox[supplement_mask] | |
det_label = det_label[supplement_mask] | |
if det_label.shape[0] == 0: | |
segm_results.append([[] | |
for _ in range(self.mask_head.num_classes) | |
]) | |
else: | |
segm_result = self.mask_head.get_seg_masks( | |
mask_pred, det_bbox, det_label, self.test_cfg, | |
ori_shapes[i], scale_factors[i], rescale) | |
segm_results.append(segm_result) | |
return segm_results | |
def aug_test_mask(self, feats, img_metas, det_bboxes, det_labels): | |
"""Test for mask head with test time augmentation.""" | |
if det_bboxes.shape[0] == 0: | |
segm_result = [[] for _ in range(self.mask_head.num_classes)] | |
else: | |
aug_masks = [] | |
for x, img_meta in zip(feats, img_metas): | |
img_shape = img_meta[0]['img_shape'] | |
scale_factor = img_meta[0]['scale_factor'] | |
flip = img_meta[0]['flip'] | |
flip_direction = img_meta[0]['flip_direction'] | |
_bboxes = bbox_mapping(det_bboxes[:, :4], img_shape, | |
scale_factor, flip, flip_direction) | |
mask_rois = bbox2roi([_bboxes]) | |
mask_results = self._mask_forward(x, mask_rois) | |
# convert to numpy array to save memory | |
aug_masks.append( | |
mask_results['mask_pred'].sigmoid().cpu().numpy()) | |
merged_masks = merge_aug_masks(aug_masks, img_metas, self.test_cfg) | |
ori_shape = img_metas[0][0]['ori_shape'] | |
segm_result = self.mask_head.get_seg_masks( | |
merged_masks, | |
det_bboxes, | |
det_labels, | |
self.test_cfg, | |
ori_shape, | |
scale_factor=1.0, | |
rescale=False) | |
return segm_result | |