Spaces:
Runtime error
Runtime error
Update Train.py
Browse files
Train.py
CHANGED
|
@@ -1,8 +1,22 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
try:
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
|
|
|
|
|
|
| 6 |
def tokenize_fn(example):
|
| 7 |
return tokenizer(
|
| 8 |
example["prompt"] + example["completion"],
|
|
@@ -11,34 +25,45 @@ def train_lora(epochs, batch_size, learning_rate):
|
|
| 11 |
max_length=256,
|
| 12 |
)
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
# Asegúrate que las columnas correctas estén
|
| 17 |
-
tokenized.set_format(type="torch", columns=["input_ids", "attention_mask"])
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
| 20 |
|
|
|
|
| 21 |
training_args = TrainingArguments(
|
| 22 |
-
output_dir=
|
| 23 |
per_device_train_batch_size=int(batch_size),
|
| 24 |
-
num_train_epochs=
|
| 25 |
-
learning_rate=learning_rate,
|
| 26 |
save_total_limit=1,
|
| 27 |
logging_steps=10,
|
| 28 |
push_to_hub=False
|
| 29 |
)
|
| 30 |
|
|
|
|
| 31 |
trainer = Trainer(
|
| 32 |
-
|
|
|
|
| 33 |
args=training_args,
|
| 34 |
train_dataset=tokenized["train"],
|
| 35 |
data_collator=data_collator,
|
| 36 |
)
|
| 37 |
|
|
|
|
| 38 |
trainer.train()
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
return "✅ Entrenamiento completado
|
|
|
|
| 43 |
except Exception as e:
|
| 44 |
-
return f"❌ Error durante el entrenamiento: {e}"
|
|
|
|
| 1 |
+
from datasets import load_dataset
|
| 2 |
+
from transformers import Trainer, TrainingArguments, DataCollatorForLanguageModeling
|
| 3 |
+
# Se asume que peft, tokenizer, base_model, etc., están definidos globalmente.
|
| 4 |
+
|
| 5 |
+
def train_lora(epochs, batch_size, learning_rate, model_to_train, tokenizer, dataset_path, lora_path):
|
| 6 |
+
"""
|
| 7 |
+
Ejecuta el entrenamiento del modelo LoRA de forma eficiente.
|
| 8 |
+
|
| 9 |
+
:param model_to_train: El modelo PEFT (LoRA) ya envuelto y listo para entrenar.
|
| 10 |
+
:param tokenizer: El tokenizer cargado.
|
| 11 |
+
:param dataset_path: Ruta al archivo JSON del dataset.
|
| 12 |
+
:param lora_path: Ruta donde se guardarán los adaptadores LoRA.
|
| 13 |
+
"""
|
| 14 |
try:
|
| 15 |
+
# 1. Carga del Dataset (Asegúrate de que 'tu_dataset.json' exista)
|
| 16 |
+
print(f"🔄 Cargando dataset desde: {dataset_path}")
|
| 17 |
+
dataset = load_dataset("json", data_files=dataset_path)
|
| 18 |
+
|
| 19 |
+
# 2. Tokenización eficiente
|
| 20 |
def tokenize_fn(example):
|
| 21 |
return tokenizer(
|
| 22 |
example["prompt"] + example["completion"],
|
|
|
|
| 25 |
max_length=256,
|
| 26 |
)
|
| 27 |
|
| 28 |
+
# 🟢 MEJORA: batched=True para tokenización más rápida
|
| 29 |
+
tokenized = dataset.map(tokenize_fn, batched=True, remove_columns=dataset["train"].column_names)
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
# 3. Preparación final de los datos
|
| 32 |
+
# No es estrictamente necesario si ya se usa DataCollator, pero es buena práctica.
|
| 33 |
+
tokenized.set_format(type="torch", columns=["input_ids", "attention_mask", "labels"])
|
| 34 |
+
|
| 35 |
+
# El DataCollatorForLanguageModeling se encarga de clonar 'input_ids' a 'labels'
|
| 36 |
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
| 37 |
|
| 38 |
+
# 4. Argumentos de Entrenamiento
|
| 39 |
training_args = TrainingArguments(
|
| 40 |
+
output_dir=lora_path,
|
| 41 |
per_device_train_batch_size=int(batch_size),
|
| 42 |
+
num_train_epochs=float(epochs), # 🟢 MEJORA: Usar float para aceptar épocas decimales
|
| 43 |
+
learning_rate=float(learning_rate), # 🟢 MEJORA: Usar float
|
| 44 |
save_total_limit=1,
|
| 45 |
logging_steps=10,
|
| 46 |
push_to_hub=False
|
| 47 |
)
|
| 48 |
|
| 49 |
+
# 5. Inicialización y Entrenamiento del Trainer
|
| 50 |
trainer = Trainer(
|
| 51 |
+
# 🟢 CORRECCIÓN CRÍTICA: Debe usarse el modelo PEFT (LoRA) ya envuelto
|
| 52 |
+
model=model_to_train,
|
| 53 |
args=training_args,
|
| 54 |
train_dataset=tokenized["train"],
|
| 55 |
data_collator=data_collator,
|
| 56 |
)
|
| 57 |
|
| 58 |
+
print("🚀 Iniciando entrenamiento...")
|
| 59 |
trainer.train()
|
| 60 |
+
|
| 61 |
+
# 6. Guardado Correcto de los Adaptadores
|
| 62 |
+
# 🟢 CORRECCIÓN CRÍTICA: Guardar solo los adaptadores LoRA (peft)
|
| 63 |
+
model_to_train.save_pretrained(lora_path)
|
| 64 |
+
tokenizer.save_pretrained(lora_path)
|
| 65 |
|
| 66 |
+
return f"✅ Entrenamiento completado. Adaptadores LoRA guardados en {lora_path}"
|
| 67 |
+
|
| 68 |
except Exception as e:
|
| 69 |
+
return f"❌ Error durante el entrenamiento: {e}"
|